A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Edaravone Ameliorates Cerebral Ischemia-Reperfusion Injury by Downregulating Ferroptosis via the Nrf2/FPN Pathway in Rats. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Edaravone, an antioxidant protective agent, has anti-cerebral ischemic reperfusion injury (CIRI) effects, but its anti-CIRI mechanism is unclear. The aim of this study is to investigate the anti-CIRI mechanism of edaravone based on the nuclear factor-E2-related factor 2 (Nrf2)/ferroportin (FPN) pathway that regulates ferroptosis-mediated cerebral ischemia-reperfusion injury. We evaluated the brain injury by constructing a middle cerebral artery occlusion and reperfusion (MCAO/R) model in rats. The results showed that cerebral infarct volume and neurological impairment scores were increased in cerebral ischemia-reperfusion rats, with impaired sensorimotor ability; furthermore, brain tissue glutathione (GSH) content was decreased, Fe, malondialdehyde (MDA) and lipide peroxide (LPO) content were increased, and the expression level of glutathione peroxidase 4 (GPX4), a key protein of ferroptosis, was also decreased. Meanwhile, the Nrf2 expression level was increased and the FPN expression level was decreased after cerebral ischemia-reperfusion, while the levels of interleukin (IL)-6, IL-1β, tumor necrosis factor (TNF)-α, and myeloperoxidase (MPO) were increased. However, edaravone exhibited a protective effect on cerebral infarct and neurological and sensorimotor function in relevant tests. In addition, we also found that edaravone decreased the contents of Fe, MDA, and LPO in the brain tissue of MCAO/R rats and increased GSH content to inhibit ferroptosis. Furthermore, Western blot showed that after treatment with edaravone, the expression of Nrf2, GPX4, and FPN was up-regulated, the nuclear location of Nrf2 was increased, and the levels of inflammation-related indicators IL-6, IL-1β, TNF-α, and MPO were lower than in the MCAO/R group. Our results demonstrated that edaravone inhibits ferroptosis to attenuate CIRI, probably through the activation of the Nrf2/FPN pathway.

Download full-text PDF

Source
http://dx.doi.org/10.1248/bpb.b22-00186DOI Listing

Publication Analysis

Top Keywords

cerebral ischemia-reperfusion
16
expression level
12
ischemia-reperfusion injury
8
nrf2/fpn pathway
8
anti-ciri mechanism
8
cerebral infarct
8
brain tissue
8
gsh content
8
il-6 il-1β
8
edaravone
7

Similar Publications