A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Comparative transcriptome provides insight into responding mechanism of waterlogging stress in Actinidia valvata Dunn. | LitMetric

Comparative transcriptome provides insight into responding mechanism of waterlogging stress in Actinidia valvata Dunn.

Gene

College of Horticulture Science, Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Zhejiang A & F University, Hangzhou 311300, China. Electronic address:

Published: December 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Kiwifruit is one of the most popular fruits, and the area of its cultivation in China has grown rapidly over the last decade. However, kiwifruit vines are vulnerable to waterlogging, especially in the extensive areas of south China where it is grown. This has become an important factor limiting yields. Therefore, it is necessary to clarify the responses of kiwifruit to waterlogging. Here, we have selected Actinidia valvata Dunn which is able to withstand waterlogging conditions and the waterlogging-susceptible Actinidia deliciosa to perform the RNA-seq of roots under waterlogging stress. Seedling roots of Actinidia valvata Dunn and Actinidia deliciosa presented distinct root phenotypes after waterlogging treatments. Genome mapping showed a large genome difference between Actinidia valvata Dunn and Actinidia deliciosa. Transcription factors MYB, MYB-related, AP2-EREBP, bHLH, WRKY, and NAC were identified as the key genes involved in the response to waterlogging stress of kiwifruit. Meanwhile, the MAPK signaling pathway and the glycolysis/gluconeogenesis pathway were identified as the vital pathways involved in the response to waterlogging, and key genes were identified from these two pathways. These results will broaden our understanding of transcriptional response of waterlogging stress and will provide new insights into the molecular mechanisms associated with waterlogging stress. Furthermore, identification of the genes responsible will assist in the breeding of kiwifruit tolerant of waterlogging.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.gene.2022.146843DOI Listing

Publication Analysis

Top Keywords

waterlogging stress
20
actinidia valvata
16
valvata dunn
16
actinidia deliciosa
12
response waterlogging
12
waterlogging
11
china grown
8
dunn actinidia
8
key genes
8
involved response
8

Similar Publications