A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Self-supervised region-aware segmentation of COVID-19 CT images using 3D GAN and contrastive learning. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Medical image segmentation is a key initial step in several therapeutic applications. While most of the automatic segmentation models are supervised, which require a well-annotated paired dataset, we introduce a novel annotation-free pipeline to perform segmentation of COVID-19 CT images. Our pipeline consists of three main subtasks: automatically generating a 3D pseudo-mask in self-supervised mode using a generative adversarial network (GAN), leveraging the quality of the pseudo-mask, and building a multi-objective segmentation model to predict lesions. Our proposed 3D GAN architecture removes infected regions from COVID-19 images and generates synthesized healthy images while keeping the 3D structure of the lung the same. Then, a 3D pseudo-mask is generated by subtracting the synthesized healthy images from the original COVID-19 CT images. We enhanced pseudo-masks using a contrastive learning approach to build a region-aware segmentation model to focus more on the infected area. The final segmentation model can be used to predict lesions in COVID-19 CT images without any manual annotation at the pixel level. We show that our approach outperforms the existing state-of-the-art unsupervised and weakly-supervised segmentation techniques on three datasets by a reasonable margin. Specifically, our method improves the segmentation results for the CT images with low infection by increasing sensitivity by 20% and the dice score up to 4%. The proposed pipeline overcomes some of the major limitations of existing unsupervised segmentation approaches and opens up a novel horizon for different applications of medical image segmentation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9419627PMC
http://dx.doi.org/10.1016/j.compbiomed.2022.106033DOI Listing

Publication Analysis

Top Keywords

covid-19 images
20
segmentation model
12
segmentation
11
region-aware segmentation
8
segmentation covid-19
8
images
8
contrastive learning
8
medical image
8
image segmentation
8
model predict
8

Similar Publications