A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Strain Screening and Particle Formation: a Lysinibacillus boronitolerans for Self-Healing Concrete. | LitMetric

Strain Screening and Particle Formation: a Lysinibacillus boronitolerans for Self-Healing Concrete.

Appl Environ Microbiol

The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technologygrid.469325.f, Hangzhou, People's Republic of China.

Published: September 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Microbial-induced calcite precipitation is a promising technology to solve the problem of cracks in soil concrete. The most intensively investigated microorganisms are urease-producing bacteria. Lysinibacillus that is used as urease-producing bacteria in concrete repair has rarely been reported. In this study, Lysinibacillus boronitolerans with a high urease activity was isolated from soil samples. This strain is salt- and alkali-tolerance, and at pH 13, can grow to ~OD 2.0 after 24 h. At a salt concentration of 6%, the strain can still grow to ~OD 1.0 after 24 h. The feasibility of using this strain in self-healing concrete was explored. The data showed that cracks within ~0.6 mm could be repaired naturally with hydration when spores and substrates were added to the concrete in an appropriate proportion. Moreover, the number and morphology of CaCO crystals that were produced by bacteria can be influenced by the concrete environment. An efficiency method to elucidate the process of microbial-induced calcium carbonate crystal formation was established with Particle Track G400. This study provides a template for future studies on the theory of mineralization based on microorganisms. The formation of calcium carbonate crystals in concrete by urease-producing bacteria is not understood fully. In this study, a Lysinibacillus boronitolerans strain with a high urease activity was isolated and used to analyze the counts and sizes of the crystals and the relationship with time. The data showed that the number of crystal particles increases exponentially in a short period with sufficient substrate, after which the crystals grow, precipitate or break. In concrete, the rate-limiting steps of calcium carbonate crystal accumulation are spore germination and urease production. These results provided data support for the rational design of urease-producing bacteria in concrete repair.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9499011PMC
http://dx.doi.org/10.1128/aem.00804-22DOI Listing

Publication Analysis

Top Keywords

urease-producing bacteria
16
lysinibacillus boronitolerans
12
calcium carbonate
12
concrete
9
self-healing concrete
8
bacteria concrete
8
concrete repair
8
study lysinibacillus
8
high urease
8
urease activity
8

Similar Publications