Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Viral waterborne diseases are widespread in cities due largely to the occurrence of enteric viruses in urban rivers, which pose a significant concern to human health. Yet, the application of rapid detection technology for enteric viruses in environmental water remains undeveloped globally. Here, multiple linear regression (MLR) modeling and artificial neural network (ANN) modeling, which used frequently measured physicochemical parameters in river water, were constructed to predict the concentration of enteric viruses including human enteroviruses (EnVs), rotaviruses (HRVs), astroviruses (AstVs), noroviruses GⅡ (HuNoVs GⅡ), and adenoviruses (HAdVs) in rivers. After training, testing, and validating, ANN models showed better performance than any MLR model for predicting the viral concentration in Jinhe River. All determined R-values for ANN models exceeded 0.89, suggesting a strong correlation between the predicted and measured outputs for target enteric viruses. Furthermore, ANN models provided a better congruence between the observed and predicted concentrations of each virus than MLR models did. Together, these findings strongly suggest that ANN modeling can provide more accurate and timely predictions of viral concentrations based on frequent (or routine) measurements of physicochemical parameters in river water, which would improve assessments of waterborne disease prevalence in cities.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2022.129506 | DOI Listing |