What can we learn from studying plastic debris in the Sea Scheldt estuary?

Sci Total Environ

Atomic & Mass Spectrometry-A&MS Research Group, Department of Chemistry, Ghent University, Campus Sterre, Krijgslaan 281-S12, 9000 Ghent, Belgium. Electronic address:

Published: December 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The Sea Scheldt estuary has been suggested to be a significant pathway for transfer of plastic debris to the North Sea. We have studied 12,801 plastic items that were collected in the Sea Scheldt estuary (Belgium) during 3 sampling campaigns (in spring, summer, and autumn) using a technique called anchor netting. The investigation results indicated that the abundance of plastic debris in the Scheldt River was on average 1.6 × 10 items per m with an average weight of 0.38 × 10 g per m. Foils were the most abundant form, accounting for >88 % of the samples, followed by fragments for 11 % of the samples and filaments, making up for <1 % of the plastic debris. FTIR spectroscopy of 7 % of the total number of plastic debris items collected in the Sea Scheldt estuary (n = 883) revealed that polypropylene (PP), polyethylene (PE), and polystyrene (PS) originating from disposable packaging materials were the most abundant types of polymers. A limited number of plastic debris items (n = 100) were selected for non-destructive screening of their mineral element composition using micro-X-ray fluorescence spectrometry (μXRF). The corresponding results revealed that S, Ca, Si, P, Al, and Fe were the predominant mineral elements. These elements originate from flame retardants, mineral fillers, and commonly used catalysts for plastic production. Finally, machine learning algorithms were deployed to test a new concept for forensic identification of the different plastic entities based on the most important elements present using a limited subset of PP (n = 36) and PE (n = 35) plastic entities.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2022.158226DOI Listing

Publication Analysis

Top Keywords

plastic debris
12
sea scheldt
12
scheldt estuary
8
learn studying
4
plastic
4
studying plastic
4
sea
4
debris sea
4
scheldt
4
scheldt estuary?
4

Similar Publications

This study presents the first integrated assessment of plastic pollution at the Kura River delta, where the river enters the hydrologically enclosed Caspian Sea. We applied a modular toolbox comprising four complementary components: high-resolution hydrodynamic modeling to predict debris convergence zones, UAV-based mapping to survey shoreline conditions, automated object-based image analysis for debris detection and classification, and standardized field monitoring by trained community participants for ground-truthing and source identification. Using this framework, we identified debris accumulation hotspots and developed a replicable approach for assessing plastic pollution in semi-enclosed systems.

View Article and Find Full Text PDF

Dataset on quantifying the beach litter from Manado Bay (northern Sulawesi, Indonesia), which lies in the Coral Triangle, over a 5-year period (2018-2022).

Data Brief

October 2025

Aquatic Science Program, Faculty of Fisheries and Marine Science, Sam Ratulangi University, Jl. Kampus UNSRAT Bahu, Manado 95115, North Sulawesi, Indonesia.

Data is presented on the macro and meso size, weight, and number of items for a variety of beach litter types collected from Manado Bay, Northern Sulawesi, Indonesia, which lies within the Coral Triangle. The data, both raw and partly processed, were collected over 5 years (2018 to 2022) using the internationally standard method for monitoring marine debris, which has been adopted by Indonesia. The classification is based on 9 material types: (1) plastics (PL), (2) foamed plastics (FP), (3) cloth (CL), (4) glass and ceramics (GC), (5) metal (ME), (6) other type of litter (OT), (7) paper and cardboard (PC), (8) rubber (RB), and (9) wood (WD), and further broken down into subcategories.

View Article and Find Full Text PDF

Unmanaged plastic waste in Sub-Saharan Africa pollutes large areas and degrades into microplastics. Surfaces of microplastic are colonized by bacteria and fungi, resulting in the plastisphere. Plastispheres from high population hotspots on the African continent enrich pathogenic fungi, posing a potential threat to human health.

View Article and Find Full Text PDF

Rivers are the main method for plastic debris to be transferred from continental to marine environments. The aim of this study is to test the reliability of a low-cost methodology using active radio frequency identification (RFID) tags developed by the ELA Enterprise to assess travel distance and identify the preferential deposition areas of floating (n = 7) and submerged (n = 7) plastic bottles in a peri-urban river located downstream of the city of Strasbourg (France). Our study shows that the protocol tested is simple to set up, fast (1 h per 1,5 km of river length) and reliable, with a detection return rate of 86 %.

View Article and Find Full Text PDF

The microplastics (0.3-5 mm) and mesoplastics (5-25 mm) in the non-tidal estuary of the Pregolya River (south-eastern Baltic Sea) were investigated for the first time in order to trace the retention zone (estuarine microplastic maxima, EMPM) at the river-sea interface, which is characterised by a salinity gradient. The mean abundance of all plastics (0.

View Article and Find Full Text PDF