A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Efficient adaptive feature aggregation network for low-light image enhancement. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Existing learning-based methods for low-light image enhancement contain a large number of redundant features, the enhanced images lack detail and have strong noises. Some methods try to combine the pyramid structure to learn features from coarse to fine, but the inconsistency of the pyramid structure leads to luminance, color and texture deviations in the enhanced images. In addition, these methods are usually computationally complex and require high computational resource requirements. In this paper, we propose an efficient adaptive feature aggregation network (EAANet) for low-light image enhancement. Our model adopts a pyramid structure and includes multiple multi-scale feature aggregation block (MFAB) and one adaptive feature aggregation block (AFAB). MFAB is proposed to be embedded into each layer of the pyramid structure to fully extract features and reduce redundant features, while the AFAB is proposed for overcome the inconsistency of the pyramid structure. EAANet is very lightweight, with low device requirements and a quick running time. We conducted an extensive comparison with some state-of-the-art methods in terms of PSNR, SSIM, parameters, computations and running time on LOL and MIT5K datasets, and the experiments show that the proposed method has significant advantages in terms of comprehensive performance. The proposed method reconstructs images with richer color and texture, and the noises is effectively suppressed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9398031PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0272398PLOS

Publication Analysis

Top Keywords

pyramid structure
20
feature aggregation
16
adaptive feature
12
low-light image
12
image enhancement
12
efficient adaptive
8
aggregation network
8
redundant features
8
enhanced images
8
inconsistency pyramid
8

Similar Publications