Insights into characterizing and producing anisotropic food structures.

Crit Rev Food Sci Nutr

Department of Food Material Science, Institute of Food Science and Biotechnology, University of Hohenheim, Stuttgart, Germany.

Published: January 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Besides the flavor profile of food, texture plays a major role in terms of the acceptance and likeability of food products. In contrast to gel-like homogenous isotropic structures, where the characterization is established and structure-texture mechanisms are well understood, there is still a lack of knowledge in the field of anisotropic complex food matrices. Food systems that show anisotropic properties in terms of macroscopic mechanical anisotropy as in grown meat, or mixed complex systems where anisotropic shaped particles or fibers are embedded into an isotropic matrix are challenging to characterize, hence the structure-texture correlation is not trivial to understand. In this paper, we bring together the state of the art of different anisotropic structures as a source of food, their formation in terms of structured plant proteins, and consequently the structure-texture correlation of those. Characteristic terms and properties to differentiate between anisotropic systems are introduced with the purpose to facilitate characterization of those. Based on the here provided terms and characteristics, further studies toward understanding such systems and their perception can be conducted. Beyond that, a first opinion on crucial influencing factors on the perception of anisotropic systems and their mechanistic background is provided.

Download full-text PDF

Source
http://dx.doi.org/10.1080/10408398.2022.2113365DOI Listing

Publication Analysis

Top Keywords

systems anisotropic
8
structure-texture correlation
8
anisotropic systems
8
anisotropic
7
food
6
terms
5
systems
5
insights characterizing
4
characterizing producing
4
producing anisotropic
4

Similar Publications

Shear-stress-induced swirling flow in biological systems.

Biosystems

September 2025

Department of Physics, Lancaster University, Lancaster LA1 4YB, UK. Electronic address:

Swirling motion is an essential phenomenon that significantly influences numerous biological processes, such as the mixing of molecular components within living cells, nutrient transport, the structural changes of the cytoskeletons of contractile cells and the rearrangement of multicellular systems caused by collective cell migration. The dynamical relationship between subcellular and supracellular rearrangements enhances cell migration and contributes to tissue homeostasis. However, the basic mechanisms that drive swirling motion in biological contexts remain a matter of ongoing inquiry.

View Article and Find Full Text PDF

Polariton Spin Separation and Propagation by Rashba-Dresselhaus Spin-Orbit Coupling in an Anisotropic Two-Dimensional Perovskite Microcavity.

Nano Lett

September 2025

Key Laboratory of Micro & Nano Photonic Structures, Department of Optical Science and Engineering, College of Future Information Technology, Fudan University, Shanghai 200433, China.

The separation and propagation of spin are vital to understanding spin-orbit coupling (SOC) in quantum systems. Exciton-polaritons, hybrid light-matter quasiparticles, offer a promising platform for investigating SOC in quantum fluids. By utilization of the optical anisotropy of materials, Rashba-Dresselhaus SOC (RDSOC) can be generated, enabling robust polariton spin transport.

View Article and Find Full Text PDF

Purpose This planning study aimed to clarify the significance of inverse planning with variable dose rate (VDR) and the segment shape optimization (SSO) in the quality and efficiency of dynamic conformal arcs (DCA) using the high-definition dynamic radiosurgery (HDRS) platform for stereotactic radiosurgery (SRS) of single brain metastases (BMs). Materials and methods Twenty clinical BMs were included, with the gross tumor volume (GTV) ranging from 0.33 cc to 48.

View Article and Find Full Text PDF

Dual sulfur sources redox dynamics guided growth of 〈hk1〉-oriented SbS microrods: lattice strain modulation for ultra-low dark current.

J Colloid Interface Sci

September 2025

College of Physics and Electronic Information, Yunnan Key Laboratory of Optoelectronic Information Technology, Yunnan Normal University, Kunming 650500, China. Electronic address:

Antimony trisulfide (SbS) has emerged as a promising inorganic semiconductor for optoelectronics due to its distinctive anisotropic crystal structure and suitable bandgap (∼1.7 eV). While hydrothermal synthesis remains challenging for achieving high crystallinity and controlled morphology, we developed an innovative dual‑sulfur precursor strategy utilizing sodium thiosulfate (STS) and thioacetamide (TAA) at a 7:2 M ratio with SbCl.

View Article and Find Full Text PDF

The nonlinear Fokker-Planck equation with nongradient drift forces and an anisotropic potential.

Chaos

September 2025

CeBio y Departamento de Ciencias Básicas, Universidad Nacional del Noroeste de la Provincia de Buenos Aires (UNNOBA), CONICET, Roque Saenz Peña 456, Junin B6000, Argentina and Centro Brasileiro de Pesquisas Físicas, Rua Xavier Sigaud 150, Rio de Janeiro 22290-180, RJ, Brazil.

Studies regarding physical phenomena described by nonlinear Fokker-Planck equations usually consider the case where the drift forces acting on the physical system under investigation are derived from the gradient of a potential function. In the present manuscript, we investigate nonlinear Fokker-Planck equations, where the drift field has a component that is derived from the gradient of an asymmetric potential and another that corresponds to a nongradient force term. We consider the specific case of a two-dimensional, nonlinear Fokker-Planck equation where the drift field is obtained from an anisotropic, harmonic potential, besides the nongradient term.

View Article and Find Full Text PDF