98%
921
2 minutes
20
Lakes are often described as sentinels of global change. Phenomena like lake eutrophication, algal blooms, or reorganization in community composition belong to the most studied ecosystem regime shifts. However, although regime shifts have been well documented in several lakes, a global assessment of the prevalence of regime shifts is still missing, and, more in general, of the factors altering stability in lake status, is missing. Here, we provide a first global assessment of regime shifts and stability in the productivity of 1,015 lakes worldwide using trophic state index (TSI) time series derived from satellite imagery. We find that 12.8% of the lakes studied show regime shifts whose signatures are compatible with tipping points, while the number of detected regime shifts from low to high TSI has increased over time. Although our results suggest an overall stable picture for global lake dynamics, the limited instability signatures do not mean that lakes are insensitive to global change. Modeling the interaction between lake climatic, geophysical, and socioeconomic features and their stability properties, we find that the probability of a lake experiencing a tipping point increases with human population density in its catchment, while it decreases as the gross domestic product of that population increases. Our results show how quantifying lake productivity dynamics at a global scale highlights socioeconomic inequalities in conserving natural environments.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9436327 | PMC |
http://dx.doi.org/10.1073/pnas.2116413119 | DOI Listing |
Glob Chang Biol
September 2025
Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, the Netherlands.
Droughts are increasing with climate change, affecting the functioning of terrestrial ecosystems and limiting their capacity to mitigate rising atmospheric CO levels. However, there is still large uncertainty on the long-term impacts of drought on ecosystem carbon (C) cycling, and how this determines the effect of subsequent droughts. Here, we aimed to quantify how drought legacy affects the response of a heathland ecosystem to a subsequent drought for two life stages of Calluna vulgaris resulting from different mowing regimes.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
School of Materials Science and Engineering, Beihang University, Beijing 100191, P. R. China.
Nanostructured cubic boron nitride (NS-cBN) has attracted significant attention due to its high hardness and excellent thermal stability, yet a systematic strategy to balance strength and toughness through atomically structural design remains elusive. Here, we integrate plasticity theory with large-scale atomistic simulations to elucidate the size-dependent roles of internal defects, i.e.
View Article and Find Full Text PDFPLoS Comput Biol
September 2025
Mathematical and Statistical Methods (Biometris), Wageningen University, Wageningen, The Netherlands.
Many plant cell functions, including cell morphogenesis and anisotropic growth, rely on the self-organisation of cortical microtubules into aligned arrays with the correct orientation. An important ongoing debate is how cell geometry, wall mechanical stresses, and other internal and external cues are integrated to determine the orientation of the cortical array. Here, we demonstrate that microtubule-based nucleation can markedly shift the balance between these often competing directional cues.
View Article and Find Full Text PDFACS Omega
September 2025
Department of Chemistry, American University of Beirut, P.O. Box 11-0236, Riad El-Solh, 1107 2020 Beirut, Lebanon.
Fractal growth in reaction-diffusion frameworks (RDF) offers a powerful paradigm for understanding self-assembly in chemical and materials systems. However, its connection to diffusion-limited aggregation (DLA) remains underexplored. Here, we present the first quantitative demonstration of RDF-driven fractal crystallization of benzoic acid (BA), revealing a direct correlation among fractal dimension, diffusion rate, and gel-matrix chemistry.
View Article and Find Full Text PDFJ Exp Bot
September 2025
Genetics and Physiology of microalgae, InBioS/Phytosystems, University of Liège, Belgium.
Photosynthetic organisms have evolved diverse strategies to adapt to fluctuating light conditions, balancing efficient light capture with photoprotection. In green algae and land plants, this involves specialized light-harvesting complexes (LHCs), non-photochemical quenching, and state transitions driven by dynamic remodeling of antenna proteins associated with Photosystems (PS) I and II. Euglena gracilis, a flagellate with a secondary green plastid, represents a distantly related lineage whose light-harvesting regulation remains poorly understood.
View Article and Find Full Text PDF