A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Mitochondrial oxygen sensing of acute hypoxia in specialized cells - Is there a unifying mechanism? | LitMetric

Mitochondrial oxygen sensing of acute hypoxia in specialized cells - Is there a unifying mechanism?

Biochim Biophys Acta Bioenerg

Justus Liebig University, Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany. Electronic address:

Published: November 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Acclimation to acute hypoxia through cardiorespiratory responses is mediated by specialized cells in the carotid body and pulmonary vasculature to optimize systemic arterial oxygenation and thus oxygen supply to the tissues. Acute oxygen sensing by these cells triggers hyperventilation and hypoxic pulmonary vasoconstriction which limits pulmonary blood flow through areas of low alveolar oxygen content. Oxygen sensing of acute hypoxia by specialized cells thus is a fundamental pre-requisite for aerobic life and maintains systemic oxygen supply. However, the primary oxygen sensing mechanism and the question of a common mechanism in different specialized oxygen sensing cells remains unresolved. Recent studies unraveled basic oxygen sensing mechanisms involving the mitochondrial cytochrome c oxidase subunit 4 isoform 2 that is essential for the hypoxia-induced release of mitochondrial reactive oxygen species and subsequent acute hypoxic responses in both, the carotid body and pulmonary vasculature. This review compares basic mitochondrial oxygen sensing mechanisms in the pulmonary vasculature and the carotid body.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbabio.2022.148911DOI Listing

Publication Analysis

Top Keywords

oxygen sensing
28
acute hypoxia
12
specialized cells
12
carotid body
12
pulmonary vasculature
12
oxygen
10
mitochondrial oxygen
8
sensing acute
8
hypoxia specialized
8
body pulmonary
8

Similar Publications