A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Universal Hopping Motion Protected by Structural Topology. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

A scaling law elucidates the universality in nature, presiding over many physical phenomena which seem unrelated. Thus, exploring the universality class of scaling law in a particular system enlightens its physical nature in relevance to other systems and sometimes unearths an unprecedented new dynamic phase. Here, the dynamics of weakly driven magnetic skyrmions are investigated, and its scaling law is compared with the motion of a magnetic domain wall (DW) creep. This study finds that the skyrmion does not follow the scaling law of the DW creep in 2D space but instead shows a hopping behavior similar to that of the particle-like DW in 1D confinement. In addition, the hopping law satisfies even when a topological charge of the skyrmion is removed. Therefore, the distinct scaling behavior between the magnetic skyrmion and the DW stems from a general principle beyond the topological charge. This study demonstrates that the hopping behavior of skyrmions originates from the bottleneck process induced by DW segments with diverging collective lengths, which is inevitable in any closed-shape spin structure in 2D. This work reveals that the structural topology of magnetic texture determines the universality class of its weakly driven motion, which is distinguished from the universality class of magnetic DW creep.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.202203275DOI Listing

Publication Analysis

Top Keywords

scaling law
16
universality class
12
structural topology
8
weakly driven
8
hopping behavior
8
topological charge
8
scaling
5
law
5
magnetic
5
universal hopping
4

Similar Publications