98%
921
2 minutes
20
Material extrusion-type fused filament fabrication (FFF) 3-D printing is a valuable tool for education. During FFF 3-D printing, thermal degradation of the polymer releases small particles and chemicals, many of which are hazardous to human health. In this study, particle and chemical emissions from 10 different filaments made from virgin (never printed) and recycled polymers were used to print the same object at the polymer manufacturer's recommended nozzle temperature ("normal") and at a temperature higher than recommended ("hot") to simulate the real-world scenarios of a person intentionally or unknowingly printing on a machine with a changed setting. Emissions were evaluated in a college teaching laboratory using standard sampling and analytical methods. From mobility sizer measurements, particle number-based emission rates were 81 times higher; the proportion of ultrafine particles (diameter <100 nm) were 4% higher, and median particle sizes were a factor of 2 smaller for hot-temperature prints compared with normal-temperature prints (all -values <0.05). There was no difference in emission characteristics between recycled and virgin acrylonitrile butadiene styrene and polylactic acid polymer filaments. Reducing contaminant release from FFF 3-D printers in educational settings can be achieved using the hierarchy of controls: (1) elimination/substitution (e.g., training students on principles of prevention-through-design, limiting the use of higher emitting polymer when possible); (2) engineering controls (e.g., using local exhaust ventilation to directly remove contaminants at the printer or isolating the printer from students); (3) administrative controls such as password protecting printer settings and establishing and enforcing adherence to a standard operating procedure based on a proper risk assessment for the setup and use (e.g., limiting the use of temperatures higher than those specified for the filaments used); and (4) maintenance of printers.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9377640 | PMC |
http://dx.doi.org/10.1021/acs.chas.1c00041 | DOI Listing |
Heliyon
March 2024
Department of Prosthodontics, Faculty of Dentistry, Semmelweis University, Budapest, Hungary.
Problem: Several types of 3D printers with different techniques and prices are available on the market. However, results in the literature are inconsistent, and there is no comprehensive agreement on the accuracy of 3D printers of different price categories for dental applications.
Aim: This study aimed to investigate the accuracy of five different 3D printing systems, including a comparison of budget- and higher-end 3D printing systems, according to a standardized production and evaluation protocol.
Polymers (Basel)
January 2023
NASA Glenn Research Center, Cleveland, OH 44135, USA.
Rapid innovations in 3-D printing technology have created a demand for multifunctional composites. Advanced polymers like amorphous thermoplastic polyetherimide (PEI) can create robust, lightweight, and efficient structures while providing high-temperature stability. This work manufactured ULTEM, a PEI-based polymer, and carbon-fiber-infused ULTEM multi-material composites with varying layering patterns (e.
View Article and Find Full Text PDFResour Conserv Recycl
January 2022
Robert Morris University, School of Engineering, Mathematics, and Science, Moon Township, PA, 15108, United States.
Fused filament fabrication three-dimensional (FFF 3-D) printing is thought to be environmentally sustainable; however, significant amounts of waste can be generated from this technology. One way to improve its sustainability is via distributed recycling of plastics in homes, schools, and libraries to create feedstock filament for printing. Risks from exposures incurred during recycling and reuse of plastics has not been incorporated into life cycle assessments.
View Article and Find Full Text PDFJ Chem Health Saf
August 2021
School of Engineering, Mathematics, and Science, Robert Morris University, Moon Township, Pennsylvania 15108, United States.
Material extrusion-type fused filament fabrication (FFF) 3-D printing is a valuable tool for education. During FFF 3-D printing, thermal degradation of the polymer releases small particles and chemicals, many of which are hazardous to human health. In this study, particle and chemical emissions from 10 different filaments made from virgin (never printed) and recycled polymers were used to print the same object at the polymer manufacturer's recommended nozzle temperature ("normal") and at a temperature higher than recommended ("hot") to simulate the real-world scenarios of a person intentionally or unknowingly printing on a machine with a changed setting.
View Article and Find Full Text PDFJ Toxicol Environ Health B Crit Rev
July 2022
Respiratory Health Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA.
Additive manufacturing (AM) refers to several types of processes that join materials to build objects, often layer-by-layer, from a computer-aided design file. Many AM processes release potentially hazardous particles and gases during printing and associated tasks. There is limited understanding of the efficacy of controls including elimination, substitution, administrative, and personal protective technologies to reduce or remove emissions, which is an impediment to implementation of risk mitigation strategies.
View Article and Find Full Text PDF