A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Theoretical and Experimental Understanding of Metal Single-Atom Electrocatalysts for Accelerating the Electrochemical Reaction of Lithium-Sulfur Batteries. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Metal single-atom materials have attracted tremendous attention in the research field of lithium-sulfur (Li-S) batteries because they can effectively improve the reaction kinetics of sulfur cathodes. However, it is still difficult to determine the best metal single-atom catalyst for Li-S batteries, due to the lack of a unified measurement and evaluation method. Herein, a series of metal single-atom- and nitrogen-doped graphene materials (M-NG, M = Fe, Co, Ni, Ir, Ru) have been prepared as the catalysts for promoting the reaction kinetics of the sulfur reduction reaction process. Using rotating disk electrode measurements and density functional theory-based theoretical calculations, Ni-NG was screened out to be the best catalyst. It is found that Ni-NG materials can provide a kinetically favorable pathway for the reversible conversion of polysulfide conversion, thus increasing the utilization of sulfur. By coating the Ni-NG materials on the separator as a multifunctional interlayer, a commercially available sulfur cathode presents a stable specific capacity of 701.8 mAh g at a current rate of 0.5C over 400 cycles. Even with a high sulfur loading of 3.8 mg cm, a high areal capacity of 4.58 mAh cm can be achieved. This work will provide a fundamental understanding of efficient single-atom catalyst materials for Li-S batteries.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.2c09430DOI Listing

Publication Analysis

Top Keywords

metal single-atom
12
li-s batteries
12
reaction kinetics
8
kinetics sulfur
8
single-atom catalyst
8
ni-ng materials
8
materials
5
sulfur
5
theoretical experimental
4
experimental understanding
4

Similar Publications