98%
921
2 minutes
20
The COVID-19 associated opportunistic fungal infections have posed major challenges in recent times. Global scientific efforts have identified several SARS-CoV2 host-pathogen interactions in a very short time span. However, information about the molecular basis of COVID-19 associated opportunistic fungal infections is not readily available. Previous studies have identified a number of host targets involved in these opportunistic fungal infections showing association with COVID-19 patients. We screened host targets involved in COVID-19-associated opportunistic fungal infections, in addition to host-pathogen interaction data of SARS-CoV2 from well-known and widely used biological databases. Venn diagram was prepared to screen common host targets involved in studied COVID-19-associated fungal infections. Moreover, an interaction network of studied disease targets was prepared with STRING to identify important targets on the basis of network biological parameters. The host-pathogen interaction (HPI) map of SARS-CoV2 was also prepared and screened to identify interactions of the virus with targets involved in studied fungal infections. Pathway enrichment analysis of host targets involved in studied opportunistic fungal infections and the subset of those involved in SARS-CoV2 HPI were performed separately. This data-based analysis screened six common targets involved in all studied fungal infections, among which CARD9 and CYP51A1 were involved in host-pathogen interactions with SARS-CoV2. Moreover, several signaling pathways such as integrin signaling were screened, which were associated with disease targets involved in SARS-CoV2 HPI. The results of this study indicate several host targets deserving detailed investigation to develop strategies for the management of SARS-CoV2-associated fungal infections.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9364728 | PMC |
http://dx.doi.org/10.1016/j.csbj.2022.08.013 | DOI Listing |
J Med Microbiol
September 2025
Department of Microbiology, Meiji Pharmaceutical University, Tokyo, Japan.
Biofilms are a primary form of device-associated infections and typically exhibit high tolerance to antimicrobial agents. In biofilms formed by multiple microbial species, microorganisms may show even greater tolerance, complicating treatment. There is evidence that meropenem (MEPM) tolerance in is increased in dual-species biofilms with , and effective treatments have not been established.
View Article and Find Full Text PDFMinerva Dent Oral Sci
September 2025
Department of Dental Research Cell, Dr. D.Y. Patil Dental College and Hospital, Dr. D.Y. Patil Vidyapeeth, Pune, India.
The COVID-19 pandemic, particularly in India, continues to pose a major threat to public health owing to the large number of patients that remain affected. The second wave of COVID-19 has brought with it several opportunistic diseases caused by bacteria and fungi, including mucormycosis, which is a well-known fungal infection primarily encountered in immunocompromised individuals through inhalation. In recent times, mucormycosis has become increasingly common in COVID-19 patients, particularly those with comorbidities such as diabetes, and has been observed to induce secondary infections as it spreads with COVID-19 treatment.
View Article and Find Full Text PDFmBio
September 2025
Department of Biology, Laboratory of Molecular Cell Biology, KU Leuven, Leuven, Flanders, Belgium.
Echinocandins, which target the fungal β-1,3-glucan synthase (Fks), are essential for treating invasive fungal infections, yet resistance is increasingly reported. While resistance typically arises through mutations in Fks hotspots, emerging evidence suggests a contributing role of changes in membrane sterol composition due to mutations. Here, we present a clinical case of () in which combined mutations in and , but not alone, appear to confer echinocandin resistance.
View Article and Find Full Text PDFBackground: To improve the molecular diagnostic yield for Aspergillus spp. from respiratory samples, we developed and evaluated a new DNA extraction method directly from respiratory samples combined with in-house Aspergillus real-time PCR.
Methods: We developed a method using beads and resin, where a sample is centrifuged to separate the supernatant and pellet.
Background: Actinomyces graevenitzii is a relatively uncommon Actinomyces species, which is an oral species and predominantly recovered from respiratory locations [1,2]. It is a gram-positive anaerobic bacteria or microaerobic filamentation bacteria, which can induce pyogenic and granulomatous inflammation characterized by swelling and concomitant pus, sinus formation, and the formation of yellow sulfur granules. All tissues and organs can be infected; the most common type involves the neck and face (55%), followed by the abdominal and pelvic cavities (20%).
View Article and Find Full Text PDF