Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

A new ground triplet biradical 2′,4′,6′-triisopropylbiphenyl-3,5-diyl bis(tert-butyl nitroxide) (iPr3BPBN) was prepared and characterized by means of room-temperature ESR spectroscopy displaying a zero-field splitting pattern together with a half-field signal. Complex formation with gadolinium(III) 1,1,1,5,5,5-hexafluoropentane-2,4-dionate (hfac) afforded a macrocycle [{Gd(hfac)3(μ-iPr3BPBN)}2]. As the X-ray crystallographic analysis clarified, the biradical serves as a bridging ligand, giving a 16-membered ring, where each nitroxide radical oxygen atom is directly bonded to a Gd3+ ion. The magnetic study revealed that the iPr3BPBN bridge behaved as a practically triplet biradical and that the Gd3+-radical magnetic coupling was weakly ferromagnetic. The exchange parameters were estimated as 2jrad-rad/kB > 300 K and 2JGd-rad/kB = 1.2 K in the H = −2J S1•S2 convention. The DFT calculation based on the atomic coordinates clarified the ground triplet nature in metal-free iPr3BPBN and the enhanced triplet character upon coordination. The calculation also suggests that ferromagnetic coupling would be favorable when the Gd-O-N-C(sp2) torsion comes around 100°. The present results are compatible with the proposed magneto-structure relationship on the nitroxide-Gd compounds.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9370185PMC
http://dx.doi.org/10.3390/molecules27154930DOI Listing

Publication Analysis

Top Keywords

ground triplet
8
triplet biradical
8
ferromagnetic 2p-2p
4
2p-2p 4f-2p
4
4f-2p couplings
4
couplings macrocycle
4
macrocycle biradicals
4
biradicals gadoliniumiii
4
gadoliniumiii ions
4
ions ground
4

Similar Publications

Spin Qubit Properties of the Boron-Vacancy/Carbon Defect in the Two-Dimensional Hexagonal Boron Nitride.

J Phys Condens Matter

September 2025

Department of Physics, Tuskegee University, 1200 West Montgomery Road, 106 Chappie James, Tuskegee, Alabama, 36088-1920, UNITED STATES.

Spin qubit defects in two-dimensional materials have a number of advantages over those in three-dimensional hosts including simpler technologies for the defect creation and control, as well as qubit accessibility. In this work, we select the VBCB defect in the hexagonal boron nitride (hBN) as a possible optically controllable spin qubit and explain its triplet ground state and neutrality. In this defect a boron vacancy is combined with a carbon dopant substituting the closest boron atom to the vacancy.

View Article and Find Full Text PDF

We report the first paramagnetic boron tetraradical, comprising four boraphenanthrene-type units with boryl radical centers bridged by a central tetraphenylethene (TPE) linker. With strongly π-accepting and sterically demanding cyclic(alkyl)(amino) carbene ligands (), spin densities localize on the boron-carbene fragments (92%), consistent with a true boron-centered tetraradical. Magnetic measurements of reveal minimal spin-spin coupling, consistent with four noninteracting = 1/2 centers.

View Article and Find Full Text PDF

Mechanistic Insight into Para-Substituent Control of Thermal Half-Lives in Arylazopyrazole Photoswitches.

Angew Chem Int Ed Engl

September 2025

Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 17, Vienna, 1090, Austria.

Arylazopyrazoles are versatile photoswitches with excellent photochromic properties and tunable thermal half-lives, yet the mechanistic role of substituents in controlling thermal stability remains poorly understood. Here, we synthesized an extensive library of arylazo-1,3,5-trimethylpyrazole photoswitches and rationalized the influence of para-substituents on the thermal half-lives, finding excellent agreement between calculated and measured trends. Calculations show that the electron-donating and electron-withdrawing nature of the substituents modulates the back-isomerization process through at least two distinct mechanisms.

View Article and Find Full Text PDF

We present an ab initio approach to study molecules containing heavy atoms strongly interacting with quantum fields in optical devices. The theory has been derived from relativistic quantum electrodynamics (QED), introducing the approximations needed to provide a formalism suitable for relativistic quantum chemistry. This framework represents the ideal starting point to extend the main quantum chemistry methods to relativistic polaritonic.

View Article and Find Full Text PDF

One of the main limitations of photodynamic therapy (PDT) is hypoxia, which is caused by increased tumour proliferation creating a hypoxic tumour microenvironment (TME), as well as oxygen consumption by PDT. Hypoxia-activated prodrugs (HAPs), such as molecules containing aliphatic or aromatic -oxide functionalities, are non-toxic prodrugs that are activated in hypoxic regions, where they are reduced into their cytotoxic form. The (oxido)pyridylporphyrins tested in this work were synthesised as potential HAPs from their AB pyridylporphyrin precursors, using -chloroperbenzoic acid (-CPBA) as an oxidising reagent.

View Article and Find Full Text PDF