98%
921
2 minutes
20
One of the disadvantages of reinforced concrete is the large weight of structures due to the steel reinforcement. A way to overcome this issue and develop new types of reinforcing elements is by using polymer composite reinforcement, which can successfully compensate for the shortcomings of steel reinforcement. Additionally, a promising direction is the creation of variotropic (transversely isotropic) building elements. The purpose of this work was to numerically analyze improved short bending concrete elements with a variotropic structure reinforced with polymer composite rods and to determine the prospects for the further extension of the results obtained for long-span structures. Numerical models of beams of a transversally isotropic structure with various types of reinforcement have been developed in a spatially and physically nonlinear formulation in ANSYS software considering cracking and crashing. It is shown that, in combination with a stronger layer of the compressed zone of the beam, carbon composite reinforcement has advantages and provides a greater bearing capacity than glass or basalt composite. It has been proven that the use of the integral characteristics of concrete and the deflections of the elements are greater than those when using the differential characteristics of concrete along the height of the section (up to 5%). The zones of the initiation and propagation of cracks for different polymer composite reinforcements are determined. An assessment of the bearing capacity of the beam is given. A significant (up to 146%) increase in the forces in the reinforcing bars and a decrease in tensile stresses (up to 210-230%) were established during the physically non-linear operation of the concrete material. The effect of a clear redistribution of stresses is in favor of elements with a variotropic cross section in height.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9370235 | PMC |
http://dx.doi.org/10.3390/polym14153051 | DOI Listing |
Light Sci Appl
September 2025
Department of Electrical, Electronic, and Communication Engineering, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo, 112-8551, Japan.
While non-destructive in-line monitoring at manufacturing sites is essential for safe distribution cycles of pharmaceuticals, efforts are still insufficient to develop analytical systems for detailed dynamic visualisation of foreign substances and material composition in target pills. Although spectroscopies, expected towards pharma testing, have faced technical challenges in in-line setups for bulky equipment housing, this work demonstrates compact dynamic photo-monitoring systems by selectively extracting informative irradiation-wavelengths from comprehensive optical references of target pills. This work develops a non-destructive in-line dynamic inspection system for pharma agent pills with carbon nanotube (CNT) photo-thermoelectric imagers and the associated ultrabroadband sub-terahertz (THz)-infrared (IR) multi-wavelength monitoring.
View Article and Find Full Text PDFInt J Biol Macromol
September 2025
Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Saharanpur campus, Saharanpur, 247001, Uttar Pradesh, India. Electronic address:
In the modern era, polymyrcene, a sustainable polymer made from renewable resources, offers a potential path towards the advancement of green products. Here, we successfully created and characterized the first-ever all-bio-based composite films using cellulose nanocrystals (CNCs) made from agricultural waste, polylactic acid (PLA), and polymyrcene. Environmentally acceptable substitutes for traditional polymer composites have been made possible by incorporating CNCs into the PLA-Polymyrcene matrix, which produced materials with improved structural and functional qualities.
View Article and Find Full Text PDFInt J Pharm
September 2025
Department of Biomedical Engineering, Amirkabir University of Technology (Tehran polytechnic), Iran. Electronic address:
Hydrogen sulfide (HS) has been recognized as one of the three main gasotransmitters found extensively in tissues, regulating functions crucial for survival. In many pathological cases, its concentration drops from the intrinsic level, impairing healing and leading to unmet regeneration outcomes. A hybrid microparticle/hydrogel system was developed to sustainably release HS and regulate its level in deprived tissues.
View Article and Find Full Text PDFEnviron Pollut
September 2025
State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Key Laboratory of Groundwater Pollution Simulation and Control Ministry of Ecology and Environment, Chinese Research Academy of Environmental Sciences, Beiji
Paddy soil represents a critical sink for microplastics (MPs), where frequent redox oscillations from wet-dry alternation can accelerate MPs aging, and alter dissolved organic matter (DOM) composition in paddy soil. However, this process remains poorly understood to date. Here, we systematically investigated the aging of three MPs and their structural effects on DOM in paddy soil during wet-dry alternation.
View Article and Find Full Text PDFChemosphere
September 2025
Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, 9 Strzody Street, 44-100 Gliwice, Poland. Electronic address:
Perchlorate contamination is a recent and significant issue in the context of environmental pollution. Perchlorates are mainly used as ingredients in solid propellants and pyrotechnic compositions. Perchlorate contamination of drinking water and food has recently become a human health concern, as studies have shown that they can interfere with the normal uptake of iodine by the thyroid gland, leading to a reduction in its production of triiodothyronine (T3) and thyroxine (T4) in vertebrates.
View Article and Find Full Text PDF