A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Accuracy of artificial intelligence-assisted detection of Oral Squamous Cell Carcinoma: A systematic review and meta-analysis. | LitMetric

Accuracy of artificial intelligence-assisted detection of Oral Squamous Cell Carcinoma: A systematic review and meta-analysis.

Crit Rev Oncol Hematol

Pathology Unit, Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar. Electronic address:

Published: October 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Oral Squamous Cell Carcinoma (OSCC) is an aggressive tumor with a poor prognosis. Accurate and timely diagnosis is therefore essential for reducing the burden of advanced disease and improving outcomes. In this meta-analysis, we evaluated the accuracy of artificial intelligence (AI)-assisted technologies in detecting OSCC. We included studies that validated any diagnostic modality that used AI to detect OSCC. A search was performed in six databases: PubMed, Embase, Scopus, Cochrane Library, ProQuest, and Web of Science up to 15 Mar 2022. The Quality Assessment Tool for Diagnostic Accuracy Studies was used to evaluate the included studies' quality, while the Split Component Synthesis method was utilized to quantitatively synthesize the pooled diagnostic efficacy estimates. We considered 16 out of the 566 yielded studies, which included twelve different AI models with a total of 6606 samples. The summary sensitivity, summary specificity, positive and negative likelihood ratios as well as the pooled diagnostic odds ratio were 92.0 % (95 % confidence interval [CI] 86.7-95.4 %), 91.9 % (95 % CI 86.5-95.3 %), 11.4 (95 % CI 6.74-19.2), 0.087 (95 % CI 0.051-0.146) and 132 (95 % CI 62.6-277), respectively. Our findings support the capability of AI-assisted systems to detect OSCC with high accuracy, potentially aiding the histopathological examination in early diagnosis, yet more prospective studies are needed to justify their use in the real population.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.critrevonc.2022.103777DOI Listing

Publication Analysis

Top Keywords

accuracy artificial
8
oral squamous
8
squamous cell
8
cell carcinoma
8
detect oscc
8
pooled diagnostic
8
95 %
5
accuracy
4
artificial intelligence-assisted
4
intelligence-assisted detection
4

Similar Publications