98%
921
2 minutes
20
Excited state photophysical processes play the most important role in deciding the efficiency of any photonic applications like solar light driven H evolution, which is considered to be the next big thing in the global search of renewable energy sources. Two-dimensional (2D) materials are getting enormous attention in the field of photocatalysis owing to their exquisite optical and catalytic properties, like high absorption coefficient, appropriate band positions, large specific surface area, high charge carrier mobility, Considering the huge potential of these, many different approaches are being adapted to fabricate suitable photocatalytic systems for the efficient production of H. Transient absorption spectroscopy (TAS) could be a great help in this regard, considering its efficacy in understanding any optical application. This perspective primarily deals with a few recent reports on 2D photocatalyst fabrication techniques using mechanistic insights from TAS. We have discussed the effect of doping, exfoliation and heterojunction fabrication on the photocatalytic activity of different 2D materials and explored the inherent photophysical phenomena influencing the optical behavior of these materials. A tentative future direction and possible challenges are also highlighted in this report. Overall, this unique perspective throws light on all the possible aspects of a 2D material, which are crucial and need to be addressed prior to fabrication of a photocatalyst and would be extremely helpful for the growth of the 2D photocatalytic field.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d2cp02148j | DOI Listing |
J Phys Chem B
September 2025
Key Laboratory of Advanced Light Conversion Materials and Biophotonics, School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, China.
Light-harvesting complex IIs (LHCIIs) are the major antenna in higher plants, balancing light capture through photoprotection. While it naturally forms trimers, stress conditions can induce monomerization, altering pigment interactions. Here, we explored how molecular oxygen affects triplet excited-state dynamics in LHCII monomers using time-resolved transient absorption spectroscopy under aerobic and anaerobic conditions.
View Article and Find Full Text PDFJ Chem Phys
September 2025
Department of Chemistry, McGill University, Montreal, Quebec H3A 0G4, Canada.
Semiconductor quantum dots (QDs) are well known to give rise to a quantum confined structure of excitons. Because of this quantum confinement, new physics of hot exciton relaxation dynamics arises. Decades of work using transient absorption (TA) spectroscopy have yielded initial simple observations, such as estimates of the cooling rate from single pump photon energy experiments.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China.
For optoelectronic devices based on lead-halide perovskites and other semiconductors, a comprehensive understanding of the electric field influences on the carrier transport characteristics is critical to the optimization of their practical performances. To fulfill this challenging goal, here we have employed photoluminescence spatial image and transient absorption microscopy measurements on an individual CsPbBr microplate biased at external voltages in an Au/CsPbBr/Au device. At the subpicosecond time scale, some photogenerated excitons are dissociated into free electrons and holes that drift toward the electrodes to leave behind unfilled defect sites, which are capable of scattering the residual excitons to yield a reduced diffusion coefficient.
View Article and Find Full Text PDFChem Sci
August 2025
Department of Chemistry and Biochemistry, Auburn University Auburn Alabama 36849 USA
Organic mixed ionic-electronic conducting polymers remain at the forefront of materials development for bioelectronic device applications. During electrochemical operation, structural dynamics and variations in electrostatic interactions in the polymer occur, which affect dual transport of the ions and electronic charge carriers. Such effects remain unclear due to a lack of spectroscopic methods capable of capturing these dynamics, which hinders the rational design of higher-performance polymers.
View Article and Find Full Text PDFACS Omega
September 2025
Institut de Chimie et Procédés pour l'Energie, l'Environnement et la Santé (ICPEES), UMR-7515 CNRS-Université de Strasbourg, 25 rue Becquerel, 67087 Strasbourg, France.
For photodetection applications using 3D hybrid perovskites (HPs), dense and thick films or compacted powders in wafer form are needed and generally require large amounts of HPs. HPs are also often combined with a graphene/carbon layer to improve their conductivity. Among HP synthesis methods, mechanosynthesis, a green synthesis method, provides a large amount of powders, which are furthermore easily densified in compact wafers due to their mechanical activation.
View Article and Find Full Text PDF