A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Fluoride-free synthesis of anodic TiO nanotube layers: a promising environmentally friendly method for efficient photocatalysts. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

TiO nanotube (TNT) layers are generally prepared in fluoride-based electrolytes electrochemical anodization that relies on the field-assisted dissolution of Ti metal forming nanoporous/nanotubular structures. However, the usage of fluoride ions is considered hazardous to the environment. Therefore, we present an environmentally friendly synthesis and application of TNT layers prepared in fluoride-free nitrate-based electrolytes. A well-defined nanotubular structure with thickness up to 1.5 μm and an inner tube diameter of ∼55 nm was obtained within 5 min using aqueous X(NO) electrolytes (X = Na, K, Sr, Ag). For the first time, we show the photocatalytic performance (using a model organic pollutant), HO˙ radical production, and thorough characterization of TNT layers prepared in such electrolytes. The highest degradation efficiency ( = 0.0113 min) and HO˙ radical production rate were obtained using TNT layers prepared in AgNO (Ag-NT). The intrinsic properties of Ag-NT such as the valence band maximum of ∼2.9 eV, surface roughness of ∼6 nm, and suitable morphological features and crystal structure were obtained. These results have the potential to pave the way for a more environmentally friendly synthesis of anodic TNT layers in the future using the next generation of fluoride-free nitrate-based electrolytes.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d2nr03379hDOI Listing

Publication Analysis

Top Keywords

tnt layers
20
environmentally friendly
12
layers prepared
12
synthesis anodic
8
tio nanotube
8
friendly synthesis
8
fluoride-free nitrate-based
8
nitrate-based electrolytes
8
ho˙ radical
8
radical production
8

Similar Publications