98%
921
2 minutes
20
Background: Chromatin modifying enzymes, mainly through post translational modifications, regulate chromatin architecture and by extension the underlying transcriptional kinetics in normal and malignant cells. Muscle invasive bladder cancer (MIBC) has a high frequency of alterations in chromatin modifiers, with 76% of tumors exhibiting mutation in at least one chromatin modifying enzyme [1]. Additionally, clonal expansion of cells with inactivating mutations in chromatin modifiers has been identified in the normal urothelium, pointing to a currently unknown role of these proteins in normal bladder homeostasis.
Objective: To review current knowledge of chromatin modifications and enzymes regulating these processes in Bladder cancer (BCa).
Methods: By reviewing current literature, we summarize our present knowledge of external stimuli that trigger loss of equilibrium in the chromatin accessibility landscape and emerging therapeutic interventions for targeting these processes.
Results: Genetic lesions in BCa lead to altered function of chromatin modifying enzymes, resulting in coordinated dysregulation of epigenetic processes with disease progression.
Conclusion: Mutations in chromatin modifying enzymes are wide-spread in BCa and several promising therapeutic targets for modulating activity of these genes are currently in clinical trials. Further research into understanding how the epigenetic landscape evolves as the disease progresses, could help identify patients who might benefit the most from these targeted therapies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9278011 | PMC |
http://dx.doi.org/10.3233/BLC-211609 | DOI Listing |
Dev Biol
September 2025
School of Biological and Chemical Sciences, University of Galway, Biomedical Sciences Building, Newcastle Road, Galway H91 W2TY, Ireland. Electronic address:
The transcription factor Six1 and its co-activator Eya1 play central and varied roles during the development of sensory neurons derived from the cranial placodes in vertebrates. Previous studies suggested that these proteins promote both the maintenance of proliferative neuronal progenitors and neuronal differentiation. Context-specific interactions of Six1 and/or Eya1 with different cofactors are likely to contribute to the activation of distinct target genes during different stages of placodal neurogenesis.
View Article and Find Full Text PDFCurr Drug Targets
September 2025
Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, 443002, China.
Double homeobox A pseudogene 9 (DUXAP9), also known as long intergenic non-coding RNA 1296 (LINC01296) and lymph node metastasis-associated transcript 1 (LNMAT1), is an emerging lncRNA encoded by a pseudogene. It has been reported to be upregulated in various tumor types and functions as an oncogenic factor. The high expression of DUXAP9 is closely related to clinical pathological features and poor prognosis in 16 types of malignant tumors.
View Article and Find Full Text PDFPlant J
September 2025
Plant Genomics and Breeding Institute, Seoul National University, Seoul, South Korea.
Salt stress impairs photosynthetic efficiency and consequently reduces the growth, development, and grain yield of crop plants. The formation of hydrophobic barriers in the root endodermis, including the suberin lamellae and Casparian strips, is a key adaptive strategy for salt stress tolerance. In this study, we identified the role of the rice NAC transcription factor, ONAC005, in salt stress tolerance.
View Article and Find Full Text PDFSTAR Protoc
September 2025
College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling 712100, China. Electronic address:
High-throughput chromosome conformation capture (Hi-C) provides genome-wide insights into chromatin interactions within the three-dimensional structure of the nucleus, making it a powerful tool for studying genome architecture. Here, we provide a modified in situ Hi-C protocol for small cell numbers, utilizing 50-100 embryonic cells at the 8-cell stage to investigate chromatin organization during bovine early embryonic development. This protocol overcomes the challenges of limited sample availability and offers valuable insights into chromatin dynamics during bovine early embryogenesis.
View Article and Find Full Text PDFMicrobiol Spectr
September 2025
Department of Viral Transformation, Leibniz Institute of Virology (LIV), Martinistraße, Hamburg, Germany.
Unlabelled: Human adenoviruses (HAdVs) induce significant reorganization of the nuclear environment, leading to the formation of virus-induced subnuclear structures known as replication compartments (RCs). Within these RCs, viral genome replication, gene expression, and modulation of cellular antiviral responses are tightly coordinated, making them valuable models for studying virus-host interactions. In a recent study, we analyzed the protein composition of HAdV type 5 (HAdV-C5) RCs isolated from infected primary cells at different time points during infection using quantitative proteomics.
View Article and Find Full Text PDF