98%
921
2 minutes
20
A non-canonical DNA/RNA structure, G-quadruplex (G4), is a unique structure formed by two or more guanine quartets, which associate through Hoogsteen hydrogen bonding leading to form a square planar arrangement. A set of RNA-binding proteins specifically recognize G4 structures and play certain unique physiological roles. These G4-binding proteins form ribonucleoprotein (RNP) through a physicochemical phenomenon called liquid-liquid phase separation (LLPS). G4-containing RNP granules are identified in both prokaryotes and eukaryotes, but extensive studies have been performed in eukaryotes. We have been involved in analyses of the roles of G4-containing RNAs recognized by two G4-RNA-binding proteins, TDP-43 and FUS, which both are the amyotrophic lateral sclerosis (ALS) causative gene products. These RNA-binding proteins play the essential roles in both G4 recognition and LLPS, but they also carry the risk of agglutination. The biological significance of G4-binding proteins is controlled through unique 3D structure of G4, of which the risk of conformational stability is influenced by environmental conditions such as monovalent metals and guanine oxidation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9309350 | PMC |
http://dx.doi.org/10.3389/fmolb.2022.957502 | DOI Listing |
Curr Opin Infect Dis
August 2025
Transplant and Immunocompromised Host Infectious Diseases, Department of Medicine, Infectious Diseases Division, Massachusetts General Hospital.
Purpose Of Review: Plasma metagenomic next-generation sequencing (mNGS) enables detection of microbial cell-free deoxyribonucleic acid (mcfDNA) in blood without the need for culture or organism-specific primers. Here, we review clinical performance, methodological variability, and real-world application of plasma mNGS for infectious disease diagnosis in immunocompromised hosts (ICHs).
Recent Findings: Plasma mNGS has rapidly gained attention as a novel diagnostic tool for infections in ICHs, offering broad-range pathogen detection from a noninvasive blood sample.
BioDrugs
September 2025
Department of Nephrology, Instituto de Investigación Hospital "12 de Octubre" (imas12), Avda. De Córdoba s/n, 28041, Madrid, Spain.
Anti-CD20 monoclonal antibodies are gaining clinical relevance in the nephrology community due to their demonstrated efficacy and favorable safety profiles across short-, medium-, and long-term use. Initially developed for hematologic malignancies and multiple sclerosis, B-cell depletion therapies are now being investigated across a broader spectrum of autoimmune diseases, including glomerulopathies, both with and without associated podocytopathy. Recent advances have led to the development of novel anti-CD20 agents that are being used not only as potential alternatives to corticosteroids but also as adjunctive therapies in complex clinical settings.
View Article and Find Full Text PDFAdv Ther
September 2025
Bristol Myers Squibb, Princeton, NJ, 08540, USA.
Background And Objectives: Deucravacitinib, a first-in-class, oral, selective, allosteric tyrosine kinase 2 inhibitor, demonstrated efficacy across the primary endpoint and all key secondary endpoints in the phase 2 PAISLEY SLE trial in patients with active systemic lupus erythematosus (SLE). Here, we describe 2 phase 3 trials [POETYK SLE-1 (NCT05617677), POETYK SLE-2 (NCT05620407)] which will assess the efficacy and safety of deucravacitinib in patients with active SLE. These phase 3 trials have been designed to replicate the successful elements of the phase 2 trial, including its glucocorticoid-tapering strategy and disease activity adjudication.
View Article and Find Full Text PDFJ Phys Chem B
September 2025
Hefei National Research Center for Physical Sciences at the Microscale and Key Laboratory of Precision and Intelligent Chemistry, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China.
Multivalent protein-protein interactions play essential roles in mediating liquid-liquid phase separation (LLPS) that drives biomolecular condensate formation. Here, we systematically investigate how the spatial distribution and relative size of protein binding domains (PBDs) would influence LLPS in a mixture of spherical proteins and RNA single strands by using a patchy-particle polymer model, wherein each protein contains a fixed number of PBDs on the surface distributed closely or sparsely. Intriguingly, we find that LLPS behavior exhibits a nontrivial dependence on the cooperative interplay between PBD distribution and protein size: while sparsely distributed PBDs are more favorable to LLPS for small proteins, closely packed PBDs facilitate LLPS for larger counterparts.
View Article and Find Full Text PDFmSphere
September 2025
Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, Virginia, USA.
Apicomplexan AP2 (ApiAP2) family proteins are a family of transcription factors that are known to regulate gene expression in apicomplexan pathogens, including . In this study, we focused on TgAP2X-7, a member of the APiAP2 family that is predicted to be essential for fitness. Endogenous tagging of TgAP2X-7 followed by immunofluorescence analysis revealed that it's a cell cycle-regulated nuclear protein with peak expression in the G1 phase.
View Article and Find Full Text PDF