A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: Network is unreachable

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Electrosprayed Agar Nanocapsules as Edible Carriers of Bioactive Compounds. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Electrosprayed agar nanocapsules were developed using an acetic acid solution as solvent. The role of solution properties (viscosity, surface tension, and conductivity) in the formation of agar particles was assessed, together with the effect of both agar and acetic acid concentrations on the size and morphology of the resulting particles. Agar solutions with a concentration below 10% / were not suitable for electrospraying. Furthermore, the agar-acetic acid ratio was also critical for the formation of agar nanostructures (with an optimum ratio of 1:2). A decrease in particle size was also observed when decreasing agar concentration, with particle diameter values ranging between 50 and 400 nm. Moreover, the suitability of the electrosprayed agar nanocapsules as carriers for a model bioactive compound, chlorophyllin sodium copper salt (CHL), was also evaluated. The release profile of encapsulated CHL, with an estimated encapsulation efficiency of around 40%, was carried out in food simulants with different hydrophilicity (10% / and 50% / ethanol). While the release of the bioactive was negligible in the hydrophilic food simulant, an initial burst release followed by a slower sustained release was observed when the capsules were immersed in 50% ethanol solution. The results open up a broad range of possibilities that deserve further exploration related to the use of these edible polysaccharide-based nanocapsules.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9319333PMC
http://dx.doi.org/10.3390/foods11142093DOI Listing

Publication Analysis

Top Keywords

electrosprayed agar
12
agar nanocapsules
12
acetic acid
8
formation agar
8
50% ethanol
8
agar
7
nanocapsules
4
nanocapsules edible
4
edible carriers
4
carriers bioactive
4

Similar Publications