A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Comparison of Nutritive Values of Tropical Pasture Species Grown in Different Environments, and Implications for Livestock Methane Production: A Meta-Analysis. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The demand for dairy products is ever increasing across the world. The livestock sector is a significant source of greenhouse gas (GHG) emissions globally. The availability of high-quality pasture is a key requirement to increase the productivity of dairy cows as well as manage enteric methane emissions. Warm-season perennial grasses are the dominant forages in tropical and subtropical regions, and thus exploring their nutritive characteristics is imperative in the effort to improve dairy productivity. Therefore, we have collated a database containing a total of 4750 records, with 1277 measurements of nutritive values representing 56 tropical pasture species and hybrid cultivars grown in 26 different locations in 16 countries; this was done in order to compare the nutritive values and GHG production across different forage species, climatic zones, and defoliation management regimes. Average edaphoclimatic (with minimum and maximum values) conditions for tropical pasture species growing environments were characterized as 22.5 °C temperature (range 17.5-29.30 °C), 1253.9 mm rainfall (range 104.5-3390.0 mm), 582.6 m elevation (range 15-2393 m), and a soil pH of 5.6 (range 4.6-7.0). The data revealed spatial variability in nutritive metrics across bioclimatic zones and between and within species. The ranges of these nutrients were as follows: neutral detergent fibre (NDF) 50.9-79.8%, acid detergent fibre (ADF) 24.7-57.4%, crude protein (CP) 2.1-21.1%, dry matter (DM) digestibility 30.2-70.1%, metabolisable energy (ME)3.4-9.7 MJ kg DM, with methane (CH) production at 132.9-133.3 g animal day. The arid/dry zone recorded the highest DM yield, with decreased CP and high fibre components and minerals. Furthermore, the data revealed that climate, defoliation frequency and intensity, in addition to their interactions, have a significant effect on tropical pasture nutritive values and CH production. Overall, hybrid and newer tropical cultivars performed well across different climates, with small variations in herbage quality. The current study revealed important factors that affect pasture nutritive values and CH emissions, with the potential for improving tropical forage through the selection and management of pasture species.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9311783PMC
http://dx.doi.org/10.3390/ani12141806DOI Listing

Publication Analysis

Top Keywords

nutritive values
20
tropical pasture
16
pasture species
16
methane production
8
data revealed
8
detergent fibre
8
pasture nutritive
8
tropical
7
pasture
7
values
6

Similar Publications