A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Modeling the effect of adaptation to future climate change on spring phenological trend of European beech (Fagus sylvatica L.). | LitMetric

Modeling the effect of adaptation to future climate change on spring phenological trend of European beech (Fagus sylvatica L.).

Sci Total Environ

Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 11A, Datun Road, Chaoyang District, Beijing 100101, China.

Published: November 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Temperate trees could cope with climate change through phenotypic plasticity of phenological key events or adaptation in situ via selection on genetic variation. However, the relative contribution of local adaptation and phenotypic plasticity to phenological change is unclear for many ecologically important tree species. Here, we analyzed the leaf-out data of European beech (Fagus sylvatica L.) from 50 provenances planted in 7 trial sites. We first constructed a function between chilling accumulation (CA) and photoperiod-associated heat requirement (PHR) of leaf-out date for each provenance and quantified the relationship between parameters of the CA-PHR function and climatic variables at provenance origins by using the random forest model. Furthermore, we used the provenance-specific CA-PHR function to simulate future leaf-out dates under two climate change scenarios (RCP 4.5 and 8.5) and two assumptions (no adaptation and adaptation). The results showed that both CA, provenance, and their interactions affected the PHR of leaf-out. The provenances from southeastern Europe exhibited a stronger response of PHR to CA and thus flushed earlier than northwestern provenances. The parameters of the CA-PHR function were connected with climatic variables (e.g., mean diurnal temperature range, temperature seasonality) at the originating sites of each provenance. If only considering the phenotypic plasticity, the leaf-out date of European beech in 2070-2099 will advance by 6.8 and 9.0 days on average relative to 1951-2020 under RCP 4.5 and RCP 8.5, respectively. However, if F. sylvatica adapts to future climate change by adopting the current strategy, the advance of the leaf-out date will weaken by 1.4 and 3.4 days under RCP 4.5 and RCP 8.5, respectively. Our results suggest that the European beech could slow down its spring phenological advances and reduce its spring frost risk if it adopts the current strategy to adapt to future climate change.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2022.157540DOI Listing

Publication Analysis

Top Keywords

climate change
20
european beech
16
future climate
12
phenotypic plasticity
12
ca-phr function
12
spring phenological
8
beech fagus
8
fagus sylvatica
8
plasticity phenological
8
phr leaf-out
8

Similar Publications