A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

How Kosmotropic and Chaotropic Osmolytes Perturb the Properties of an Aqueous Solution of a Pluronic Block Copolymer? | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Poloxamer 407 (P-407) composed of a poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol) (PEG-PPG-PEG) unit has two distinct microenvironments: the interior core formed by the PPG unit and the exterior shell formed by the PEG unit. In this work, we have used two fluorescent molecules coumarin-153 and 8-anilino-1-naphthalene sulfonic acid (ANS) of contrasting natures to characterize and probe the water dynamics in the core and corona regions of the copolymer by means of spectroscopic techniques, namely, absorption, fluorescence, and time-resolved fluorescence emission spectroscopy and Fourier transform infrared (FTIR) spectroscopy. Changes in the surface morphologies were characterized by using microscopic techniques. Further, two classes of osmolytes kosmotropic (betaine and sarcosine) and chaotropic (urea) known to perturb the water structure were added to aqueous solutions of P-407. Our studies reveal that the addition of kosmotropes decreases the critical micelle temperature (CMT) of the copolymer, whereas the chaotropic osmolyte increases the CMT. Steady-state studies reveal that the addition of the osmolytes to the copolymer increases the polarity of the micelle formed and hence results in the red shift in the ANS absorbance maximum. FTIR spectroscopy reveals that kosmotropes interact with the PEG moiety of the copolymer, whereas the chaotrope interacts with both the PEG and PPG moieties of the copolymer. Solvent relaxation studies produced less changes upon the addition of the kosmotropes, whereas a greater change in the relaxation time was observed in the presence of the chaotrope.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.langmuir.2c01207DOI Listing

Publication Analysis

Top Keywords

ftir spectroscopy
8
studies reveal
8
reveal addition
8
addition kosmotropes
8
copolymer
5
kosmotropic chaotropic
4
chaotropic osmolytes
4
osmolytes perturb
4
perturb properties
4
properties aqueous
4

Similar Publications