98%
921
2 minutes
20
Predictions of xenobiotic hepatic clearance in humans using in vitro-to-in vivo extrapolation methods are frequently inaccurate and problematic. Multiple strategies are being pursued to disentangle responsible mechanisms. The objective of this work is to evaluate the feasibility of using insights gained from independent virtual experiments on two model systems to begin unraveling responsible mechanisms. The virtual culture is a software analog of hepatocytes in vitro, and the virtual human maps to hepatocytes within a liver within an idealized model human. Mobile objects (virtual compounds) map to amounts of xenobiotics. Earlier versions of the two systems achieved quantitative validation targets for intrinsic clearance (virtual culture) and hepatic clearance (virtual human). The major difference between the two systems is the spatial organization of the virtual hepatocytes. For each pair of experiments (virtual culture, virtual human), hepatocytes are configured the same. Probabilistic rules govern virtual compound movements and interactions with other objects. We focus on highly permeable virtual compounds and fix their extracellular unbound fraction at one of seven values (0.05-1.0). Hepatocytes contain objects that can bind and remove compounds, analogous to metabolism. We require that, for a subset of compound properties, per-hepatocyte compound exposure and removal rates during culture experiments directly predict corresponding measures made during virtual human experiments. That requirement serves as a cross-system validation target; we identify compound properties that enable achieving it. We then change compound properties, ceteris paribus, and provide model mechanism-based explanations for when and why measures made during culture experiments under- (or over-) predict corresponding measures made during virtual human experiments. The results show that, from the perspective of compound removal, the organization of hepatocytes within virtual livers is more efficient than within cultures, and the greater the efficiency difference, the larger the underprediction. That relationship is noteworthy because most in vitro-to-in vivo extrapolation methods abstract away the structural organization of hepatocytes within a liver. More work is needed on multiple fronts, including the study of an expanded variety of virtual compound properties. Nevertheless, the results support the feasibility of the approach and plan.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9307204 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0269775 | PLOS |
Obesity (Silver Spring)
September 2025
Division of Hematology, Oncology, and Palliative Care, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA.
Objective: From October 18-20, 2022, the National Institutes of Health held a workshop to examine the state of the science concerning obesity interventions in adults to promote health equity. The workshop had three objectives: (1) Convene experts from key institutions and the community to identify gaps in knowledge and opportunities to address obesity, (2) generate recommendations for obesity prevention and treatment to achieve health equity, and (3) identify challenges and needs to address obesity prevalence and disparities, and develop a diverse workforce.
Methods: A three-day virtual convening.
Psychophysiology
September 2025
Department of Psychology, Clinical Psychology and Psychotherapy, University of Regensburg, Regensburg, Germany.
Facial emotional expressions are interactive signals that communicate intentions. Previous research has shown that sending a facial emotional expression influences the evaluation of response expressions, but the mechanisms behind this effect remain unclear. In a preregistered experiment, 68 participants were asked to send an emoji (happy, neutral, and angry) to a virtual agent in front of them, whereupon the agent reacted with either a smiling or frowning facial expression.
View Article and Find Full Text PDFJ Appl Clin Med Phys
September 2025
Clinical Imaging Physics Group, Duke University Health System, Durham, North Carolina, USA.
Introduction: Medical physicists play a critical role in ensuring image quality and patient safety, but their routine evaluations are limited in scope and frequency compared to the breadth of clinical imaging practices. An electronic radiologist feedback system can augment medical physics oversight for quality improvement. This work presents a novel quality feedback system integrated into the Epic electronic medical record (EMR) at a university hospital system, designed to facilitate feedback from radiologists to medical physicists and technologist leaders.
View Article and Find Full Text PDFEye (Lond)
September 2025
Genetics Laboratory, Metropolitan South Clinical Laboratory, Bellvitge University Hospital, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain.
Background: Inherited retinal dystrophies (IRDs) are a genetically heterogeneous group of conditions, with approximately 40% of cases remaining unresolved after initial genetic testing. This study aimed to assess the impact of a personalised genomic approach integrating whole-exome sequencing (WES) reanalysis, whole-genome sequencing (WGS), customised gene panels and functional assays to improve diagnostic yield in unresolved cases.
Subjects/methods: We retrospectively reviewed a cohort of 597 individuals with IRDs, including 525 probands and 72 affected relatives.
NPJ Biofilms Microbiomes
September 2025
Research Group Medical Systems Biology, University Hospital Schleswig-Holstein Campus Kiel, 24105 Kiel University, Kiel, Schleswig-Holstein, Germany.
Urinary tract infections (UTIs) are among the most common bacterial infections and are increasingly complicated by multidrug resistance (MDR). While Escherichia coli is frequently implicated, the contribution of broader microbial communities remains less understood. Here, we integrate metatranscriptomic sequencing with genome-scale metabolic modeling to characterize active metabolic functions of patient-specific urinary microbiomes during acute UTI.
View Article and Find Full Text PDF