Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Background And Objective: The ever-mutating COVID-19 has infected billions of people worldwide and seriously affected the stability of human society and the world economic development. Therefore, it is essential to make long-term and short-term forecasts for COVID-19. However, the pandemic situation in different countries and regions may be dominated by different virus variants, and the transmission capacity of different virus variants diversifies. Therefore, there is a need to develop a predictive model that can incorporate mutational information to make reasonable predictions about the current pandemic situation.
Methods: This paper proposes a deep learning prediction framework, VOC-DL, based on Variants Of Concern (VOC). The framework uses slope feature method to process the time series dataset containing VOC variant information, and uses VOC-LSTM, VOC-GRU and VOC-BILSTM prediction models included in the framework to predict the daily newly confirmed cases.
Results: We analyzed daily newly confirmed cases in Italy, South Korea, Russia, Japan and India from April 14th, 2021 to July 3rd, 2021. The experimental results show that all VOC-DL models proposed in this paper can accurately predict the pandemic trend in the medium and long term, and VOC-LSTM model has the best prediction performance, with the highest average determination coefficient R2 of 96.83% in five nations' datasets. The overall prediction has robustness.
Conclusions: The experimental results show that VOC-LSTM is the best predictor for such a series of data and has higher prediction accuracy in the long run. At the same time, our VOC-DL framework combining VOC variants has reference significance for predicting other variants in the future.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9242688 | PMC |
http://dx.doi.org/10.1016/j.cmpb.2022.106981 | DOI Listing |