Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

A growing body of literature investigates convective organization, but few studies to date have sought to investigate how wind shear plays a role in the spatial organization of shallow (trade-wind) convection. The present study hence investigates the morphology of precipitating marine cumulus convection using large-eddy-simulation experiments with zonal forward and backward shear and without shear. One set of simulations includes evaporation of precipitation, promoting cold-pool development, and another set inhibits the evaporation of precipitation and thus cold-pool formation. Without (or with only weak) subcloud-layer shear, conditions are unfavorable for convective deepening, as clouds remain stationary relative to their subcloud-layer roots so that precipitative downdrafts interfere with emerging updrafts. Under subcloud-layer forward shear (FS), where the wind strengthens with height (a condition that is commonly found in the trades), clouds move at greater speed than their roots and precipitation falls downwind away from emerging updrafts. FS in the subcloud layer appears to promote the development of stronger subcloud circulations, with greater divergence in the cold-pool area downwind of the original cell and larger convergence and stronger uplift at the gust front boundary. As clouds shear forward, a larger fraction of precipitation falls outside of clouds, leading to more moistening within the cold pool (gust front).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9285389PMC
http://dx.doi.org/10.1029/2021JD035148DOI Listing

Publication Analysis

Top Keywords

trade-wind convection
8
wind shear
8
evaporation precipitation
8
emerging updrafts
8
precipitation falls
8
gust front
8
shear
7
morphology simulated
4
simulated trade-wind
4
convection cold
4

Similar Publications

Numerical simulations of the tropical mesoscales often exhibit a self-reinforcing feedback between cumulus convection and shallow circulations, which leads to the self-aggregation of clouds into large clusters. We investigate whether this basic feedback can be adequately captured by large-eddy simulations (LESs). To do so, we simulate the non-precipitating, cumulus-topped boundary layer of the canonical "BOMEX" case over a range of numerical settings in two models.

View Article and Find Full Text PDF

Cloud transition across the daily cycle illuminates model responses of trade cumuli to warming.

Proc Natl Acad Sci U S A

February 2023

Laboratoire de Météorologie Dynamique Institut Pierre Simon Laplace (LMD IPSL), Sorbonne Université, CNRS 75005, Paris, France.

The response of trade cumulus clouds to warming remains a major source of uncertainty for climate sensitivity. Recent studies have highlighted the role of the cloud-convection coupling in explaining this spread in future warming estimates. Here, using observations from an instrumented site and an airborne field campaign, together with high-frequency climate model outputs, we show that i) over the course of the daily cycle, a cloud transition is observed from deeper cumuli during nighttime to shallower cumuli during daytime, ii) the cloud evolution that models predict from night to day reflects the strength of cloud sensitivity to convective mass flux and exhibits many similarities with the cloud evolution they predict under global warming, and iii) those models that simulate a realistic cloud transition over the daily cycle tend to predict weak trade cumulus feedback.

View Article and Find Full Text PDF

Profiles of eddy momentum flux divergence are calculated as the residual in the momentum budget constructed from airborne circular dropsonde arrays ( 220 km) for 13 days during the EUREC A/ATOMIC field campaign. The observed dynamical forcing averaged over all flights agrees broadly with European Centre for Medium-Range Weather Forecasts (ECMWF) Integrated Forecasting System (IFS) forecasts. In the direction of the flow, a mean flux divergence (friction) exists over a 1.

View Article and Find Full Text PDF

A growing body of literature investigates convective organization, but few studies to date have sought to investigate how wind shear plays a role in the spatial organization of shallow (trade-wind) convection. The present study hence investigates the morphology of precipitating marine cumulus convection using large-eddy-simulation experiments with zonal forward and backward shear and without shear. One set of simulations includes evaporation of precipitation, promoting cold-pool development, and another set inhibits the evaporation of precipitation and thus cold-pool formation.

View Article and Find Full Text PDF

Counter-Gradient Momentum Transport Through Subtropical Shallow Convection in ICON-LEM Simulations.

J Adv Model Earth Syst

June 2021

Department of Remote Sensing and Geosciences TU Delft Delft the Netherlands.

It is well known that subtropical shallow convection transports heat and water vapor upwards from the surface. It is less clear if it also transports horizontal momentum upwards to significantly affect the trade winds in which it is embedded. We utilize unique multiday large-eddy simulations run over the tropical Atlantic with ICON-LEM to investigate the character of shallow convective momentum transport (CMT).

View Article and Find Full Text PDF