Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Passive sampling of emerging contaminants (ECs) in seawater represents a challenge in environmental monitoring. A specific protocol for Polar Organic Chemical Integrative Sampler (POCIS) processing may be necessary when dealing with marine applications, due to the peculiarity of the considered matrix. Herein, both the instrumental LC-MS/MS analysis and the sampler processing for the determination of 22 ECs in seawater were carefully optimized. The study entailed a test simulating POCIS sorbent exposure to seawater as well as the processing of replicated field POCIS with different elution solvents. The final method involved washing the sorbent with water, to eliminate most salts, and a two-step elution, by using methanol and a small volume of a dichloromethane-isopropanol mixture. With this protocol, recoveries between 58 and 137% (average 106%) were obtained for most analytes, including non-steroidal anti-inflammatory drugs, UV-filters, perfluorinated substances and caffeine. Still, the protocol was not suitable for very hydrophilic compounds (recovery under 20% for artificial sweeteners and the pharmaceutical salbutamol), which also showed remarkable ion suppression (matrix effects in the range 4-46%). For all other chemicals, the matrix effects were in the range 67-103% (average 86%), indicating satisfactory accuracy. Also, the overall method showed high sensitivity (detection limits in the range 0.04-9 ng g of POCIS sorbent) and excellent specificity, thanks to the monitoring of two "precursor ion-product ion" MS transitions for identity confirmation. The method was applied to samplers deployed in the Ligurian coast (Italy), detecting caffeine, bisphenol A, ketoprofen and two UV-filters as the most concentrated in the POCIS sorbent.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chroma.2022.463309DOI Listing

Publication Analysis

Top Keywords

pocis sorbent
12
polar organic
8
organic chemical
8
chemical integrative
8
samplers deployed
8
emerging contaminants
8
ecs seawater
8
matrix effects
8
effects range
8
pocis
5

Similar Publications

Despite their diffusion in research studies, passive samplers are rarely used in regulatory applications. To expand the employment of passive samplers in regulatory environmental studies, standardized procedures for processing each sampler type should be proposed and accepted, but currently, each study develops its own protocol based on previous knowledge and specific needs. In this work, six identical polar organic chemical integrative samplers in seawater were deployed to understand the importance of the sorbent transfer method prior to the elution step.

View Article and Find Full Text PDF

Polar organic chemical integrative samplers (POCIS) are promising devices for measuring the time-weighted average concentrations of hydrophilic compounds in aquatic environments. However, the mechanisms underlying compound uptake by POCIS remain unclear. We investigated the permeation kinetics of polyethersulfone and polytetrafluoroethylene membrane filters, and the sorption kinetics of Oasis HLB (Waters), Envi-Carb (Supelco), and Oasis WAX (Waters) sorbents.

View Article and Find Full Text PDF

Passive sampler housing and sorbent type determine aquatic micropollutant adsorption and subsequent bioassay responses.

Environ Pollut

September 2024

Department of Freshwater and Marine Ecology (FAME), Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands.

The combination of integrative passive sampling and bioassays is a promising approach for monitoring the toxicity of polar organic contaminants in aquatic environments. However, the design of integrative passive samplers can affect the accumulation of compounds and therewith the bioassay responses. The present study aimed to determine the effects of sampler housing and sorbent type on the number of chemical features accumulated in polar passive samplers and the subsequent bioassay responses to extracts of these samplers.

View Article and Find Full Text PDF

Novel extraction methods and compound-specific isotope analysis of methoxychlor in environmental water and aquifer slurry samples.

Sci Total Environ

June 2024

Grup MAiMA, SGR Mineralogia Aplicada, Geoquímica i Hidrogeologia (MAGH), Departament de Mineralogia, Petrologia i Geologia Aplicada, Facultat de Ciències de la Terra, Institut de Recerca de l'Aigua (IdRA), Universitat de Barcelona (UB), Martí i Franquès s/n, 08028 Barcelona, Spain; Serra Húnter

Multi-element compound-specific stable isotope analysis (ME-CSIA) allows monitoring the environmental behavior and transformation of most common and persistent contaminants. Recent advancements in analytical techniques have extended the applicability of ME-CSIA to organic micropollutants, including pesticides. Nevertheless, the application of this methodology remains unexplored concerning harmful insecticides such as methoxychlor, a polar organochlorine pesticide usually detected in soil and groundwater.

View Article and Find Full Text PDF

The quality of chemical analysis is an important aspect of passive sampling-based environmental assessments. The present study reports on a proficiency testing program for the chemical analysis of hydrophobic organic compounds in silicone and low-density polyethylene (LDPE) passive samplers and hydrophilic compounds in polar organic chemical integrative samplers. The median between-laboratory coefficients of variation (CVs) of hydrophobic compound concentrations in the polymer phase were 33% (silicone) and 38% (LDPE), similar to the CVs obtained in four earlier rounds of this program.

View Article and Find Full Text PDF