A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Laser-Microfabricated Polymer Multielectrodes for Intraspinal Microstimulation. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Objective: The overall goal of this study was to design, fabricate, and characterize a new polymer-based multielectrode for the spinal cord for the application of intraspinal microstimulation (ISMS).

Methods: Three-channel multielectrodes were fabricated from modified poly(dimethylsiloxane) (PDMS) and platinum-iridium (Pt-Ir) foil using nanosecond laser microfabrication techniques. These devices were compared against traditional 50 μm diameter Pt-Ir microwire electrodes mechanically and electrochemically in bench environments, and were assessed electrochemically and functionally in vivo in a domestic pig model.

Results: Polymer-based multielectrodes were significantly more flexible than microwire electrodes (p < 0.05) and had greater charge storage capacities in phosphate buffered saline (p < 0.05). In a domestic pig model, multielectrodes had significantly greater charge injection limits than microwire electrodes (p < 0.05). When stimulating within the quadriceps motor pool in the spinal cord, multielectrodes generated strong knee extensor joint torques of up to 4.4 ± 0.3 Nm and were able to extend the knee by up to 26 ± 1°. However, histological analyses showed that polymer-based multielectrodes, implanted with half-needle insertion aids, produced greater acute tissue damage compared to microwire electrodes (p < 0.05). Alternative insertion methods for these flexible electrodes should be explored to reduce acute tissue damage.

Conclusion: The PDMS-based three-channel multielectrodes demonstrated improved flexibility and charge injection capabilities over traditional microwire electrodes, and were able to produce functional responses in vivo.

Significance: Polymer-based multielectrodes demonstrate improved functionality over microwire electrodes while remaining more flexible than silicon multielectrode designs. These features may in the future permit polymer-based multielectrodes to implement ISMS with greater efficacy and biocompatibility compared to traditional technologies.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TBME.2022.3191437DOI Listing

Publication Analysis

Top Keywords

microwire electrodes
24
polymer-based multielectrodes
16
electrodes 005
12
multielectrodes
9
intraspinal microstimulation
8
spinal cord
8
three-channel multielectrodes
8
compared traditional
8
domestic pig
8
greater charge
8

Similar Publications