Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Hydrolysis of β-lactam drugs, a major class of antibiotics, by serine or metallo-β-lactamases (SBL or MBL) is one of the main mechanisms for antibiotic resistance. New Delhi Metallo-β-lactamase-1 (NDM-1), an acquired metallo-carbapenemase first reported in 2009, is currently considered one of the most clinically relevant targets for the development of β-lactam-β-lactamase inhibitor combinations active on NDM-producing clinical isolates. Identification of scaffolds that could be further rationally pharmacomodulated to design new and efficient NDM-1 inhibitors is thus urgently needed. Fragment-based drug discovery (FBDD) has become of great interest for the development of new drugs for the past few years and combination of several FBDD strategies, such as virtual and NMR screening, can reduce the drawbacks of each of them independently. Our methodology starting from a high throughput virtual screening on NDM-1 of a large library (more than 700,000 compounds) allowed, after slicing the hit molecules into fragments, to build a targeted library. These hit fragments were included in an in-house untargeted library fragments that was screened by Saturation Transfer Difference (STD) Nuclear Magnetic Resonance (NMR). 37 fragments were finally identified and used to establish a pharmacophore. 10 molecules based on these hit fragments were synthesized to validate our strategy. Indenone 89 that combined two identified fragments shows an inhibitory activity on NDM-1 with a K value of 4 μM.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejmech.2022.114599DOI Listing

Publication Analysis

Top Keywords

fragment-based drug
8
drug discovery
8
hit fragments
8
fragments
6
ndm-1
5
discovery strategy
4
strategy applied
4
applied identification
4
identification ndm-1
4
ndm-1 β-lactamase
4

Similar Publications

Stabilization of Native Protein-Protein Interactions with Molecular Glues: A 14-3-3 Case Study.

Acc Chem Res

September 2025

Department of Pharmaceutical Chemistry and Small Molecule Discovery Center, University of California, San Francisco 94158, United States.

ConspectusProtein-protein interactions (PPIs) play a key role in homeostasis and are often dysregulated in disease. PPIs were traditionally considered "undruggable" due to their flat surfaces and disordered domains. Recently, the identification of PPI stabilizers, or molecular glues (MGs), compounds that bind cooperatively to PPI interfaces, has provided a new direction for the field.

View Article and Find Full Text PDF

Herein we report the in silico discovery of 13 novel micromolar potent inhibitors of the SARS-CoV-2 NSP13 helicase validated in cellular antiviral and biophysical ThermoFluor assays. The compounds, discovered using a novel fragment-based pharmacophore virtual screening workflow named FragmentScout, enable the advancement of novel antiviral agents. FragmentScout uses publicly accessible structural data of the SARS-CoV-2 NSP13 helicase, which was previously generated at the Diamond LightSource by XChem high-throughput crystallographic fragment screening.

View Article and Find Full Text PDF

MolMod: a molecular modification platform for molecular property optimization via fragment-based generation.

Mol Divers

September 2025

Key Laboratory of Tropical Biological Resources of Ministry of Education and Hainan Engineering Research Center for Drug Screening and Evaluation, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, China.

Lead optimization is a crucial step in drug design. Generative AI-driven molecular modification has emerged as a powerful strategy to accelerate lead optimization by efficiently exploring chemical space and enhancing key drug-like properties. However, current AI tools primarily focus on de novo scaffold design rather than targeted modifications of validated lead compounds, limiting their practical utility in medicinal chemistry.

View Article and Find Full Text PDF

Amidst nature's repertoire of small molecule architectures, indole alkaloid-derived privileged scaffolds continuously support innovation in bioactive compound discovery and propel fragment-based drug design. Herein, we realized a metal-free, site-selective, and chemo- and regioselective cross-nucleophile coupling cascade of pluripotent indole-enamine-aniline intermediates by use of λ-iodane-mediated umpolung chemistry. The protocol is applicable toward the divergent synthesis of valuable benzo[]indolo[3,2-][2,6]naphthyridines and azepino[4,5-]indoles, which are very important privileged scaffolds in communesin-, peroforamidine-, and iboga-type alkaloids.

View Article and Find Full Text PDF

Fragment-based drug discovery typically relies on specialized spectrometric methods to identify low-affinity compounds that bind to biomolecules. Here, we report a proof-of-concept study on the development of a streamlined fragment-based screening platform for small molecules targeting RNA. This method employs low molecular weight fragments appended with a diazirine reactive moiety and an alkyne tag.

View Article and Find Full Text PDF