98%
921
2 minutes
20
p53 deficiency is a key causal factor for tumor development and progression. p53 acts in this process through, at least in part, cooperation with YAP1 but the underlying molecular mechanism is incompletely understood. In this paper, we show that CLP36, an actinin-binding cytoskeletal protein, links p53 deficiency to up-regulation of YAP1 expression and sarcoma progression. Immunohistochemical staining and Western blotting were used to investigate the effect of p53 deficiency on CLP36 expression in sarcoma tissues and cells. Furthermore, molecular, cellular, and genetic knockout and knockdown approaches were employed to investigate the functions of CLP36 in regulation of sarcoma cell behavior in culture and tumor growth in mice. Finally, biochemical approaches were used to investigate the molecular mechanism by which CLP36 regulates the malignant behavior of p53 deficient sarcoma cells. We have found that the expression of CLP36 is up-regulated in response to loss of p53 in sarcoma tissues and cells. Depletion of CLP36 inhibited malignant behavior of p53 deficient sarcoma cells. Furthermore, knockout of CLP36 in mice markedly inhibited p53 deficiency-induced tumorigenesis and improved the survival of the p53 deficient mice. Mechanistically, CLP36 promoted p53 deficiency-induced tumorigenesis through inhibition of E3 ligase atrophin-1 interacting protein-4 (AIP-4)-dependent proteasomal degradation of YAP1 and consequently increase of YAP1 expression. Our results reveal a crucial role of CLP36 in linking p53 deficiency to up-regulation of YAP1 expression and sarcoma progression. Our findings suggest that therapeutic targeting the CLP36/YAP1 signaling axis may provide an effective strategy for alleviation of p53 deficient sarcoma progression.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9274740 | PMC |
http://dx.doi.org/10.7150/thno.72365 | DOI Listing |
Zhonghua Bing Li Xue Za Zhi
September 2025
Department of Pathology, the First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China.
To investigate the clinicopathological features of SMARCA4-deficient uterine sarcoma. Five cases of SMARCA4-deficient uterine sarcoma at the Department of Pathology, the First Affiliated Hospital of Nanjing Medical University from 2018 to 2024 were collected. The morphological and immunohistochemical features were observed and analyzed.
View Article and Find Full Text PDFMol Oncol
September 2025
Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA.
Prostate cancer (PCa) is the second most lethal cancer in men in the US. African American (AA) men have twice the incidence and death rate of European American (EA) men. Advanced PCa shows increased expression and activity of the DNA damage/repair pathway enzyme, poly (ADP-ribose) polymerase 1 (PARP1).
View Article and Find Full Text PDFGynecol Oncol
September 2025
Department of Obstetrics and Gynecology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland; Department of Pathology, Helsinki University Hospital and Research Program in Applied Tumor Genomics, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
Objective: This study evaluated time to progression and post-recurrence disease-specific survival in molecularly classified endometrial carcinoma to improve understanding of disease biology and factors influencing tumor aggressiveness.
Methods: In this retrospective cohort study, immunohistochemistry and polymerase-ϵ (POLE) sequencing were used for molecular classification and determination of estrogen receptor and programmed death-ligand 1 (PD-L1) expression.
Results: We identified 1146 patients with molecularly classified endometrial carcinoma, of whom 220 (19.
bioRxiv
August 2025
Department of Pharmacy and Pharmaceutical Sciences, National University of Singapore, Singapore.
Acute myeloid leukemia (AML) is a heterogeneous disease characterized by a broad spectrum of molecular alterations that influence clinical outcomes. mutations define one of the most lethal subtypes of acute myeloid leukemia (AML), driving resistance to nearly all available treatment modalities, including venetoclax plus azacitidine (VenAza). Yet, the molecular basis of this resistance, beyond affecting transactivation of BCL-2 family genes, has remained elusive.
View Article and Find Full Text PDFBiomol Biomed
August 2025
Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Medical Key Laboratory for Prevention and Treatment of Malignant Gynecological Tumor, China.
Molecular classification has emerged as a critical tool for guiding personalized treatment in endometrial cancer (EC) and atypical endometrial hyperplasia (AEH). This retrospective study aimed to assess the impact of molecular classification on fertility-sparing treatment outcomes in patients diagnosed with EC and AEH who underwent fertility preservation therapy between 2006 and 2021. Patients were categorized into four molecular subtypes using immunohistochemistry (IHC) and Sanger sequencing, based on the Proactive Molecular Risk Classifier for Endometrial Cancer (ProMisE): POLE-ultramutated, mismatch repair (MMR) deficient (MMRd), p53 abnormal (p53abn), and p53 wild-type (p53wt).
View Article and Find Full Text PDF