Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Over the past few years, the processing of motor imagery (MI) electroencephalography (EEG) signals has been attracted for developing brain-computer interface (BCI) applications, since feature extraction and classification of these signals are extremely difficult due to the inherent complexity and tendency to artifact properties of them. The BCI systems can provide a direct interaction pathway/channel between the brain and a peripheral device, hence the MI EEG-based BCI systems seem crucial to control external devices for patients suffering from motor disabilities. The current study presents a semi-supervised model based on three-stage feature extraction and machine learning algorithms for MI EEG signal classification in order to improve the classification accuracy with smaller number of deep features for distinguishing right- and left-hand MI tasks. Stockwell transform is employed at the first phase of the proposed feature extraction method to generate two-dimensional time-frequency maps (TFMs) from one-dimensional EEG signals. Next, the convolutional neural network (CNN) is applied to find deep feature sets from TFMs. Then, the semi-supervised discriminant analysis (SDA) is utilized to minimize the number of descriptors. Finally, the performance of five classifiers, including support vector machine, discriminant analysis, k-nearest neighbor, decision tree, random forest, and the fusion of them are compared. The hyperparameters of SDA and mentioned classifiers are optimized by Bayesian optimization to maximize the accuracy. The presented model is validated using BCI competition II dataset III and BCI competition IV dataset 2b. The performance metrics of the proposed method indicate its efficiency for classifying MI EEG signals.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9273790PMC
http://dx.doi.org/10.1038/s41598-022-15813-3DOI Listing

Publication Analysis

Top Keywords

eeg signals
12
feature extraction
12
stockwell transform
8
deep features
8
bci systems
8
discriminant analysis
8
bci competition
8
competition dataset
8
bci
6
feature
5

Similar Publications

This study explores how differences in colors presented separately to each eye (binocular color differences) can be identified through EEG signals, a method of recording electrical activity from the brain. Four distinct levels of green-red color differences, defined in the CIELAB color space with constant luminance and chroma, are investigated in this study. Analysis of Event-Related Potentials (ERPs) revealed a significant decrease in the amplitude of the P300 component as binocular color differences increased, suggesting a measurable brain response to these differences.

View Article and Find Full Text PDF

A robust deep learning-driven framework for detecting Parkinson's disease using EEG.

Comput Methods Biomech Biomed Engin

September 2025

Institute of Radio Physics and Electronics, University of Calcutta, Kolkata, India.

Parkinson's disease (PD) is a neurodegenerative condition that impairs motor functions. Accurate and early diagnosis is essential for enhancing well-being and ensuring effective treatment. This study proposes a deep learning-based approach for PD detection using EEG signals.

View Article and Find Full Text PDF

Goal-directed behavior requires adjusting cognitive control, both in preparation for and in reaction to conflict. Theta oscillations and population activity in dorsomedial prefrontal cortex (dmPFC) and dorsolateral PFC (dlPFC) are known to support reactive control. Here, we investigated their role in proactive control using human intracranial electroencephalogram (EEG) recordings during a Stroop task that manipulated conflict expectations.

View Article and Find Full Text PDF

The Dynamic Management of Working Memory Is Supported by Aperiodic Neural Activity.

Psychophysiology

September 2025

Shandong Provincial Key Laboratory of Brain Science and Mental Health, Faculty of Psychology, Shandong Normal University, Jinan, China.

"Metacontrol" refers to the ability to achieve an adaptive balance between more persistent and more flexible cognitive-control styles. Recent evidence from tasks focusing on the regulation of response conflict and of switching between tasks suggests a consistent relationship between aperiodic EEG activity and task conditions that are likely to elicit a more persistent versus more flexible control style. Here we investigated whether this relationship between metacontrol and aperiodic activity can also be demonstrated for working memory (WM).

View Article and Find Full Text PDF

Machine learning techniques to classify emotions from electroencephalogram topographic maps: A systematic review.

Comput Biol Med

September 2025

Postgraduate Program in Computing, Center for Technological Development, Federal University of Pelotas, Pelotas, 96010-610, Rio Grande do Sul, Brazil.

In the task of image classification for emotion recognition, facial expression data is commonly used. However, electrical brain signals generated by neural activity provide data with greater integrity. We can capture these signals non-invasively using electroencephalogram (EEG) recording devices.

View Article and Find Full Text PDF