Comparison of the performances of machine learning and deep learning in improving the quality of low dose lung cancer PET images.

Jpn J Radiol

Clinical Imaging Research Centre, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, #B1-01, Singapore, 117599, Singapore.

Published: December 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Purpose: To compare the performances of machine learning (ML) and deep learning (DL) in improving the quality of low dose (LD) lung cancer PET images and the minimum counts required.

Materials And Methods: 33 standard dose (SD) PET images, were used to simulate LD PET images at seven-count levels of 0.25, 0.5, 1, 2, 5, 7.5 and 10 million (M) counts. Image quality transfer (IQT), a ML algorithm that uses decision tree and patch-sampling was compared to two DL networks-HighResNet (HRN) and deep-boosted regression (DBR). Supervised training was performed by training the ML and DL algorithms with matched-pair SD and LD images. Image quality evaluation and clinical lesion detection tasks were performed by three readers. Bias in 53 radiomic features, including mean SUV, was evaluated for all lesions.

Results: ML- and DL-estimated images showed higher signal and smaller error than LD images with optimal image quality recovery achieved using LD down to 5 M counts. True positive rate and false discovery rate were fairly stable beyond 5 M counts for the detection of small and large true lesions. Readers rated average or higher ratings to images estimated from LD images of count levels above 5 M only, with higher confidence in detecting true lesions.

Conclusion: LD images with a minimum of 5 M counts (8.72 MBq for 10 min scan or 25 MBq for 3 min scan) are required for optimal clinical use of ML and DL, with slightly better but more varied performance shown by DL.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11604-022-01311-zDOI Listing

Publication Analysis

Top Keywords

pet images
16
image quality
12
5 m counts
12
images
10
performances machine
8
machine learning
8
learning deep
8
deep learning
8
learning improving
8
improving quality
8

Similar Publications

Background And Objectives: The relationship between insomnia and cognitive decline is poorly understood. We investigated associations between chronic insomnia, longitudinal cognitive outcomes, and brain health in older adults.

Methods: From the population-based Mayo Clinic Study of Aging, we identified cognitively unimpaired older adults with or without a diagnosis of chronic insomnia who underwent annual neuropsychological assessments (z-scored global cognitive scores and cognitive status) and had quantified serial imaging outcomes (amyloid-PET burden [centiloid] and white matter hyperintensities from MRI [WMH, % of intracranial volume]).

View Article and Find Full Text PDF

FDG PET Findings in Rare Brain Sodium Channelopathy Associated with SCN2A Gene Mutation.

Clin Nucl Med

September 2025

Department of Nuclear Medicine & PET/CT, Mahajan Imaging & Labs.

SCN2A gene mutations, which affect the function of the voltage-gated sodium channel NaV1.2, are associated with a spectrum of neurological disorders, including epileptic encephalopathies and autism spectrum disorders. Advanced imaging modalities such as magnetic resonance imaging (MRI) and positron emission tomography (PET) have been instrumental in elucidating the neuroanatomic and functional alterations associated with these mutations.

View Article and Find Full Text PDF

Objective: This study aims to systematically evaluate the inter- and intra-observer agreement regarding lesions with uncertain malignancy potential in Ga-68 PSMA PET/CT imaging of prostate cancer patients, utilizing the PSMA-RADS 2.0 classification system, and to emphasize the malignancy evidence associated with these lesions.

Methods: We retrospectively reviewed Ga-68 PSMA PET/CT images of patients diagnosed with prostate cancer via histopathology between December 2016 and November 2023.

View Article and Find Full Text PDF

Non-invasive prediction of invasive lung adenocarcinoma and high-risk histopathological characteristics in resectable early-stage adenocarcinoma by [18F]FDG PET/CT radiomics-based machine learning models: a prospective cohort Study.

Int J Surg

September 2025

Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, Key Laboratory of Pulmonary Diseases of National Health Commission, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China

Background: Precise preoperative discrimination of invasive lung adenocarcinoma (IA) from preinvasive lesions (adenocarcinoma in situ [AIS]/minimally invasive adenocarcinoma [MIA]) and prediction of high-risk histopathological features are critical for optimizing resection strategies in early-stage lung adenocarcinoma (LUAD).

Methods: In this multicenter study, 813 LUAD patients (tumors ≤3 cm) formed the training cohort. A total of 1,709 radiomic features were extracted from the PET/CT images.

View Article and Find Full Text PDF

Introduction: We developed and validated age-related amyloid beta (Aβ) positron emission tomography (PET) trajectories using a statistical model in cognitively unimpaired (CU) individuals.

Methods: We analyzed 849 CU Korean and 521 CU non-Hispanic White (NHW) participants after propensity score matching. Aβ PET trajectories were modeled using the generalized additive model for location, scale, and shape (GAMLSS) based on baseline data and validated with longitudinal data.

View Article and Find Full Text PDF