98%
921
2 minutes
20
Objective: Type 2 diabetes mellitus (T2DM) is associated with worsened clinical outcomes in hypertrophic cardiomyopathy (HCM) patients. We sought to investigate whether HCM patients with T2DM comorbidity exhibit adverse cardiac alterations in myocardial energetics, function, perfusion, or tissue characteristics.
Research Design And Methods: A total of 55 participants with concomitant HCM and T2DM (HCM-DM) (n = 20) or isolated HCM (n = 20) and healthy volunteers (HV) (n = 15) underwent 31P-MRS and cardiovascular MRI. The HCM groups were matched for HCM phenotype.
Results: Mean ± SD European Society of Cardiology sudden cardiac death risk scores were comparable between the HCM groups (HCM 2.2 ± 1.5%, HCM-DM 1.9 ± 1.2%; P = not significant), and sarcomeric mutations were equally common. HCM-DM patients had the highest median NT-proBNP levels (HV 42 ng/L [interquartile range 35-66], HCM 298 ng/L [157-837], HCM-DM 726 ng/L [213-8,695]; P < 0.0001). Left ventricular (LV) ejection fraction, mass, and wall thickness were similar between the HCM groups. HCM-DM patients displayed a greater degree of fibrosis burden with higher scar percentage and lower global longitudinal strain compared with HCM patients. PCr/ATP (the relative concentrations of phosphocreatine and ATP) was significantly lower in the HCM-DM group than in both HCM and HV (HV 2.17 ± 0.49, HCM 1.93 ± 0.38, HCM-DM 1.54 ± 0.27; P = 0.002). In a similar pattern, stress myocardial blood flow was significantly lower in the HCM-DM group than in both HCM and HV (HV 2.06 ± 0.42 mL/min/g, HCM 1.74 ± 0.44 mL/min/g, HCM-DM 1.39 ± 0.42 mL/min/g; P = 0.002).
Conclusions: We show for the first time that HCM-DM patients display greater reductions in myocardial energetics, perfusion, and contractile function and higher myocardial scar burden and serum NT-proBNP levels compared with patients with isolated HCM despite similar LV mass and wall thickness and presence of sarcomeric mutations. These adverse phenotypic features may be important components of the adverse clinical manifestation attributable to a combined presence of HCM and T2DM.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9346996 | PMC |
http://dx.doi.org/10.2337/dc22-0083 | DOI Listing |
Biomed Environ Sci
August 2025
Department of Cardiology, Fuwai Central China Cardiovascular Hospital, Henan Provincial People's Hospital Heart Center, Zhengzhou 451464, Henan, China.
Hypertrophic cardiomyopathy (HCM) is a major contributor to cardiovascular diseases (CVD), the leading cause of death globally. HCM can precipitate heart failure (HF) by causing the cardiac tissue to weaken and stretch, thereby impairing its pumping efficiency. Moreover, HCM increases the risk of atrial fibrillation, which in turn elevates the likelihood of thrombus formation and stroke.
View Article and Find Full Text PDFJACC Heart Fail
September 2025
Royal Free Hospital, London, United Kingdom.
JACC Heart Fail
September 2025
National Cerebral and Cardiovascular Center, Suita, Japan.
Cureus
August 2025
Medicine/Cardiology, Madigan Army Medical Center, Tacoma, USA.
Apical hypertrophic cardiomyopathy (ApHCM) is an uncommon, nonobstructive form of hypertrophic cardiomyopathy (HCM) that is associated with an increased risk of ventricular aneurysms, atrial fibrillation, heart failure, and cardiac death. In this case report, a 63-year-old male patient was found to have deeply negative T waves on electrocardiogram (EKG) during a routine preoperative evaluation in an outpatient internal medicine clinic. Imaging with echocardiography and cardiac magnetic resonance confirmed the diagnosis of ApHCM.
View Article and Find Full Text PDFFront Cardiovasc Med
August 2025
Department of Cardiology, Dongguan Tai-xin Hospital, Dongguan, China.
Objective: This study sought to identify key prognostic factors in patients with hypertrophic cardiomyopathy (HCM) and heart failure with preserved ejection fraction (HFpEF), emphasizing the prognostic role of free triiodothyronine (FT3) levels.
Research Design And Methods: This retrospective cohort study enrolled 992 HCM-HFpEF patients from two Chinese medical centers between 2009 and 2019, excluding those with thyroid-affecting medications or disorders. Data on demographic and clinical variables, including FT3, were analyzed using univariate and multivariate Cox regression, Kaplan-Meier (KM) survival analysis, and restricted cubic spline (RCS) analysis to explore prognostic factors and FT3's nonlinear predictive value.