Quantitative analysis of trace N, Ar in O using glow discharge optical emission spectroscopy.

Rev Sci Instrum

Samsung Electronics, Hwaseong-si, Gyeonggi-do 18448, South Korea.

Published: June 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

A trace level of N and Ar gases in O ambience were quantitatively analyzed for the first time by glow discharge optical emission spectroscopy. Microplasma was generated in a compact gas cell by a metal (Au) electrode pair of 1 mm diameter and ∼1 mm separation with the driving voltage of ∼0.9 kV and the current of ∼5 mA in ∼60 Torr. 358 and 813 nm optical emission bands were used for N and Ar detection, respectively. A spectroscopy fiber bundle having a circular input cross section of ∼700 µm in diameter and an output of 100 µm in width and 3 mm in height was employed to promote the signal collection efficiency while preserving high spectral resolution. As a result, the detection sensitivities <1 ppm (3 - σ) were attained for both N and Ar within 10 s. The detection accuracy was also promoted by correcting the N and Ar band signal intensities using the neighboring O emission band intensities, which led to detection errors <2% (3 - σ) for both N and Ar.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0080737DOI Listing

Publication Analysis

Top Keywords

optical emission
12
glow discharge
8
discharge optical
8
emission spectroscopy
8
quantitative analysis
4
analysis trace
4
trace glow
4
spectroscopy trace
4
trace level
4
level gases
4

Similar Publications

Synthesis and Optical Properties of Unsymmetric Aromatically π-Extended BODIPY.

J Org Chem

September 2025

School of Chemical and Biopharmaceutical Sciences, Technological University Dublin, City Campus, Grangegorman, Dublin D07 EWV4, Ireland.

A series of unsymmetrically substituted BODIPY dyes featuring fused benzo- or naphtho-fragments on one pyrrolic unit were synthesized from the corresponding pyrrolic precursors. The synthetic route was optimized using a modular approach based on the condensation of formylpyrroles with alkylpyrroles, enabling the identification of precursor combinations that minimize byproduct formation and improve preparative yields. The resulting benzo- and naphtho-fused BODIPYs display intense fluorescence in the red region, with emission maxima spanning 590-680 nm and fluorescence quantum yields ranging from 0.

View Article and Find Full Text PDF

[Cu(3-bph)(PABA)(HO)] () (3-bph = ,'-bis(3-pyridylmethylene)hydrazine and PABA = -amino benzoate) is a pyridyl-N bridging Cu coordination polymer, and PABA acts as a carboxylate-O donor forming a square pyramidal CuNO motif following a zigzag one-dimensional (1D) lattice. The shows weak antiferromagnetic coupling ( = -0.196(1) cm), and emission appears at 352 nm (λ = 293 nm), which is selectively quenched by Fe via the FRET mechanism.

View Article and Find Full Text PDF

Aims: Cardiac tumors are aggressive and asymptomatic in early stages, causing late diagnosis and locoregional metastasis. Currently, the standard of care uses gadolinium-based contrast agents for MRI, and the associated hypersensitivity reactions are a significant concern, such as gadolinium deposition disease. In addition, the proximity of cardiac lesions closer to vital structures complicates surgical interventions.

View Article and Find Full Text PDF

High Performance Transmission-Type Daytime Radiative Cooling Film with a Simple and Scalable Method.

Adv Mater

September 2025

Key Laboratory for Intelligent Nano Materials and Devices of Ministry of Education, and International Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China.

Transmission-type radiative cooling textiles represent a vital strategy for personal thermal management. However, traditional preparation methods based on heat-induced phase separation face significant challenges regarding cost, environmental impact, and optical performance. Herein, a novel preparation method is devloped by blending mid-IR transparent solid styrene ethylene butylene styrene (SEBS) with solid polyethylene (PE), enabling the creation of pores through dissolving SEBS.

View Article and Find Full Text PDF

AlN is a core material widely used as a substrate and heat sink in various electronic and optoelectronic devices. Introducing luminescent properties into intrinsic AIN opens new opportunities for next-generation intelligent sensors, self-powered displays, and wearable electronics. In this study, the first evidence is presented of AlN crystals exhibiting satisfactory mechanoluminescence (ML), photoluminescence (PL), and afterglow performance, demonstrating their potential as novel multifunctional optical sensors.

View Article and Find Full Text PDF