Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Protein domains of low sequence complexity do not fold into stable, three-dimensional structures. Nevertheless, proteins with these sequences assist in many aspects of cell organization, including assembly of nuclear and cytoplasmic structures not surrounded by membranes. The dynamic nature of these cellular assemblies is caused by the ability of low-complexity domains (LCDs) to transiently self-associate through labile, cross-β structures. Mechanistic studies useful for the study of LCD self-association have evolved over the past decade in the form of simple assays of phase separation. Here, we have used such assays to demonstrate that the interactions responsible for LCD self-association can be dictated by labile protein structures poised close to equilibrium between the folded and unfolded states. Furthermore, missense mutations causing Charcot-Marie-Tooth disease, frontotemporal dementia, and Alzheimer's disease manifest their pathophysiology in vitro and in cultured cell systems by enhancing the stability of otherwise labile molecular structures formed upon LCD self-association.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9610444 | PMC |
http://dx.doi.org/10.1126/science.abn5582 | DOI Listing |