Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
The microRNAs are non-coding RNAs which post-transcriptionally regulate the expression of many eukaryotic genes, and whose dysregulation is a driver of human disease. Here we report the discovery of a very slow (0.1 s) conformational rearrangement at the Dicer cleavage site of pre-miR-21, which regulates the relative concentration of readily- and inefficiently-processed RNA structural states. We show that this dynamic switch is affected by single nucleotide mutations and can be biased by small molecule and peptide ligands, which can direct the microRNA to occupy the inefficiently processed state and reduce processing efficiency. This result reveals a new mechanism of RNA regulation and suggests a chemical approach to suppressing or activating pathogenic microRNAs by selective stabilization of their unprocessed or processed states.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10593484 | PMC |
http://dx.doi.org/10.1016/j.jmb.2022.167694 | DOI Listing |