98%
921
2 minutes
20
The advancement of four-dimensional (4D) printing has been fueled by the rise in demand for additive manufacturing and the expansion in shape-memory materials. The printing of smart substances that respond to external stimuli is known as 4D printing. 4D printing allows highly controlled shapes to simulate the physiological milieu by adding time dimensions. The 4D printing is suitable with current progress in smart compounds, printers, and its mechanism of action. The 4D printing paradigm, a revolutionary enhancement of 3D printing, was anticipated by various engineering disciplines. Tissue engineering, medicinal, consumer items, aerospace, and organ engineering use 4D printing technology. The current review mainly focuses on the basics of 4D printing and the methods used therein. It also discusses the time-dependent behavior of stimulus-sensitive compounds, which are widely used in 4D printing. In addition, this review highlights material aspects, specifically related to shape-memory polymers, stimuli-responsive materials (classified as physical, chemical, and biological), and modified materials, the backbone of 4D printing technology. Finally, potential applications of 4D printing in the biomedical sector are also discussed with challenges and future perspectives.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s13346-022-01200-y | DOI Listing |
Environ Sci Pollut Res Int
September 2025
Department of Dyes and Chemical Engineering, Bangladesh University of Textiles, Dhaka, Bangladesh.
This study quantitatively evaluated the adsorption performance of natural bentonite for removing three dye classes-cationic (Basic dye: BEZACRYL RED GRL), anionic (Reactive dye: AVITERA LIGHT RED SE), and non-ionic (Disperse dye: BEMACRON BLUE HP3R) from synthetic textile wastewater. Batch adsorption experiments were conducted under varying conditions of contact time (15-90 min), adsorbent dosage (20-60 g L⁻), pH (4 and 12), and temperature (25-100 °C), with dye concentrations quantified by UV-Vis spectroscopy. At a contact time of 30 min and room temperature (25 °C), maximum removal efficiencies reached 99.
View Article and Find Full Text PDFActa Ortop Mex
September 2025
Servicio de Ortopedia y Traumatología, Hospital de San Rafael, Hospitales Pascual. Cádiz, España.
Introduction: anatomical deformities such as developmental dysplasia of the hip (DDH) and Perthes disease represent a challenge for reconstruction. The use of 3D-printed models can be helpful for assessing the deformity, bone mass, implant size, and orientation.
Objectives: to prospectively evaluate the outcomes of 3D simulation in primary total hip arthroplasty.
Eur Urol Focus
September 2025
Department of Urology, Medical Centre, University of Heidelberg, Heidelberg, Germany; Department of Urology, Medical Faculty Carl Gustav Carus, TU Dresden, Dresden, Germany; Department of Urology, Philipps-University Marburg, Marburg, Germany.
Background And Objective: Since 2016, >21 000 patients with prostate cancer (PC) used our personalized online decision aid in routine care in Germany. We analyzed the effects of this online decision aid for men with nonmetastatic PC in a randomized controlled trial.
Methods: In the randomized controlled EvEnt-PCA trial, 116 centers performed 1:1 allocation of 1115 patients with nonmetastatic PC to use an online decision aid (intervention = I) or a printed brochure (control = C).
Environ Pollut
September 2025
Centre for Environmental and Marine Studies (CESAM) & Department of Biology, University of Aveiro, Portugal. Electronic address:
Printed circuit boards (PCB) present a complex recycling challenge due to their miniaturisation and different constituents (e.g., metals, plastics), highlighting the need for integrated bioprocessing approaches.
View Article and Find Full Text PDFBioinspir Biomim
September 2025
Mechanical Intelligence (MI) Research Group, London South Bank University, 103 Borough Road, London, London, SE1 0AA, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND.
Conventional rigid grippers remain the most-used robotic grippers in industrial assembly tasks. However, they are limited in their ability to handle a diverse range of objects. This study draws inspiration from nature to address these limitations, employing multidisciplinary methods, such as computer-aided design, parametric modeling, finite element analysis, 3D printing, and mechanical testing.
View Article and Find Full Text PDF