98%
921
2 minutes
20
The field of cancer research is famous for its incremental steps in improving therapy. The consistent but slow rate of improvement is greatly due to its meticulous use of consistent cancer biology models. However, as we enter an era of increasingly personalized cancer care, including chemo and radiotherapy, our cancer models must be equally able to be applied to all individuals. Patient-derived organoid (PDO) and organ-in-chip (OIC) models based on the micro-physiological bioengineered platform have already been considered key components for preclinical and translational studies. Accounting for patient variability is one of the greatest challenges in the crossover from preclinical development to clinical trials and patient derived organoids may offer a steppingstone between the two. In this review, we highlight how incorporating PDO's and OIC's into the development of cancer therapy promises to increase the efficiency of our therapeutics.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9220792 | PMC |
http://dx.doi.org/10.3390/cancers14123006 | DOI Listing |
Front Immunol
September 2025
Institute of Pulmonary Medicine, Hadassah Hebrew University Medical Center, Jerusalem, Israel.
Neutrophil extracellular traps (NETs) are DNA-protein structures released during a form of programmed neutrophil death known as NETosis. While NETs have been implicated in both tumor inhibition and promotion, their functional role in cancer remains ambiguous. In this study, we compared the NET-forming capacity and functional effects of NETs derived from lung cancer (LC) patients and healthy donors (H).
View Article and Find Full Text PDFMed Int (Lond)
August 2025
Department of Oncology, Combined Military Hospital/National University of Medical Sciences, Rawalpindi 46000, Pakistan.
Follicular dendritic cell sarcoma (FDCS) is a rare tumour derived from dendritic cells located in B-follicles that play a pivotal role in the adaptive immune response. Surgery is the mainstay of treatment for localized disease; however, the management of unresectable or advanced disease is less well-defined. To date, to the best of our knowledge, there is no established or preferred chemotherapeutic regimen, although a number of regimens (primarily used in lymphomas and sarcomas) have been utilized with suboptimal outcomes.
View Article and Find Full Text PDFBiochem Biophys Rep
December 2025
Department of Neurosurgery, Faculty of Medicine and University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany.
Brillouin microscopy allows mechanical investigations of biological materials at the subcellular level and can be integrated with Raman spectroscopy for simultaneous chemical mapping, thus enabling a more comprehensive interpretation of biomechanics. The present study investigates different in vitro glioblastoma models using a combination of Brillouin and Raman microspectroscopy. Spheroids of the U87-MG cell line and two patient-derived cell lines as well as patient-derived organoids were used.
View Article and Find Full Text PDFInt J Nanomedicine
September 2025
The First Hospital of Hunan University of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, People's Republic of China.
Ulcerative colitis (UC) is a chronic inflammatory bowel disease, the incidence of which continues to rise globally, and existing therapeutic options are limited by low drug bioavailability and systemic side effects. In this study, we systematically investigated the challenges of the special gastrointestinal environment of UC patients for oral drug delivery, such as extreme pH, degradation by digestive enzymes, metabolism of intestinal flora and obstruction of the intestinal mucosal barrier, and summarized the potential of plant-derived Exosome-like Nanovesicles (PELNs) as a novel delivery system. PELNs are produced by plant cells and mainly consist of proteins, RNA, lipids and plant active molecules.
View Article and Find Full Text PDFFront Oncol
August 2025
Department of Neurosurgery, Tengzhou Central People's Hospital, Tengzhou, Shandong, China.
Background: The objective of this study is to investigate the predictive role of O6-methylguanine-DNA methyltransferase (MGMT) and isocitrate dehydrogenase (IDH) status on the efficacy of bevacizumab (BEV) in high-grade glioma (HGG), while excluding the interference of chemotherapy agents.
Methods: A retrospective, single-center analysis was conducted on 103 patients with HGG who received BEV treatment. The enrolled patients were grouped based on their different biomarker statuses.