98%
921
2 minutes
20
Insulin potently promotes cell proliferation and anabolic metabolism along with a reduction in blood glucose levels. Pyruvate dehydrogenase (PDH) plays a pivotal role in glucose metabolism. Insulin increase PDH activity by attenuating phosphorylated Ser293 PDH E1α (p-PDHA1) in normal liver tissue. In contrast to normal hepatocytes, insulin enhanced p-PDHA1 level and induced proliferation of hepatocellular carcinoma HepG2 cells. Here, we attempted to find a novel function of p-PDHA1 in tumorigenesis upon insulin stimulation. We found that p-Ser293 E1α, but not the E2 or E3 subunit of pyruvate dehydrogenase complex (PDC), co-immunoprecipitated with pyruvate kinase M2 (PKM2) upon insulin. Of note, the p-PDHA1 along with PKM2 translocated to the nucleus. The p-PDHA1/PKM2 complex was associated with the promoter of long intergenic non-protein coding (LINC) 00273 gene (LINC00273) and recruited p300 histone acetyl transferase (HAT) and ATP citrate lyase (ACL), leading to histone acetylation. Consequently, the level of transcription factor ZEB1, an epithelial-mesenchymal transition (EMT) marker, was promoted through increased levels of LINC00273, resulting in cell migration upon insulin. p-PDHA1, along with PKM2, may be crucial for transcriptional regulation of specific genes through epigenetic regulation upon insulin in hepatocarcinoma cells.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9220252 | PMC |
http://dx.doi.org/10.3390/biomedicines10061256 | DOI Listing |
Front Cell Dev Biol
August 2025
Department of Oncology Science, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States.
The Wnt pathway is an evolutionarily conserved signaling cascade that regulates a wide range of fundamental cellular processes, including proliferation, differentiation, polarity, migration, metabolism, and survival. Due to its central regulatory roles, Wnt signaling is critically involved in the pathophysiology of numerous human diseases. Aberrant activation or insufficient inhibition of this pathway has been causally linked to cancer, degenerative disorders, metabolic syndromes, and developmental abnormalities.
View Article and Find Full Text PDFCurr Opin Rheumatol
September 2025
Yale School of Medicine, Department of Internal Medicine, Section of Digestive Diseases, New Haven, Connecticut, USA.
Purpose Of Review: To synthesize current knowledge on the genetic, immunopathogenic, and clinical presentations of systemic sclerosis (SSc) and primary biliary cholangitis (PBC) with a focus on their co-occurrence as a clinically relevant overlap syndrome. This narrative review summarizes preclinical and clinical studies addressing SSc-PBC overlap.
Recent Findings: Genomic studies highlight shared susceptibility loci between SSc and PBC.
Pestic Biochem Physiol
November 2025
College of Forestry, East China Woody Fragrance and Flavor Engineering Research Center of National Forestry and Grassland Administration; Jiangxi Provincial Key Laboratory of Improved Variety Breeding and Efficient Utilization of Native Tree Species and College of Agronomy, Key Laboratory of Crop Ph
Rhizoctonia solani (R. solani) is a phytopathogen that extensively affects crops, leading to plant diseases and reducing crop yields, which jeopardizes food security. β-pinene is a major component of turpentine oil and serves as a lead compound for developing new fungicides.
View Article and Find Full Text PDFPlant J
September 2025
State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory for Genetics and Breeding of Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Fores
Floral thermogenesis in lotus (Nelumbo nucifera) is a highly energy-intensive process, requiring substantial metabolic reconfiguration and substrate input. However, the mechanisms coordinating energy substrate supply during this process remain unclear. Here, we integrated microscale proteomics, time-series transcriptomics, and mitochondrial feeding assays to elucidate the substrate provisioning strategies supporting thermogenesis in lotus receptacles.
View Article and Find Full Text PDFSci Adv
September 2025
Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, USA.
Being naturally hyperglycemic and insulin insensitive, birds maintain plasma glucose levels twice as high as mammals of similar size. Recent evidence suggests that perturbation of myo-inositol (MI) plays a role in mammalian hyperglycemic regulation. Using an integrative approach, we identify a fundamental role of MI in avian metabolism.
View Article and Find Full Text PDF