Shoot thermosensors do not fulfil the same function in the root.

New Phytol

Facultad de Agronomía, Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA), Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1417DSE, Buenos Aires, Argentina.

Published: October 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Download full-text PDF

Source
http://dx.doi.org/10.1111/nph.18332DOI Listing

Publication Analysis

Top Keywords

shoot thermosensors
4
thermosensors fulfil
4
fulfil function
4
function root
4
shoot
1
fulfil
1
function
1
root
1

Similar Publications

Plants respond to higher ambient temperatures by modifying their growth rate and habitus. This review aims to summarize the accumulated knowledge obtained with Arabidopsis seedlings grown at normal and elevated ambient temperatures. Thermomorphogenesis in the shoot and the root is overviewed separately, since the experiments indicate differences in key aspects of thermomorphogenesis in the two organs.

View Article and Find Full Text PDF

Roots are highly plastic organs enabling plants to adapt to a changing below-ground environment. In addition to abiotic factors like nutrients or mechanical resistance, plant roots also respond to temperature variation. Below the heat stress threshold, Arabidopsis thaliana seedlings react to elevated temperature by promoting primary root growth, possibly to reach deeper soil regions with potentially better water saturation.

View Article and Find Full Text PDF

Shoot thermosensors do not fulfil the same function in the root.

New Phytol

October 2022

Facultad de Agronomía, Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA), Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1417DSE, Buenos Aires, Argentina.

View Article and Find Full Text PDF

Small heat shock proteins (sHsp) constitute an important chaperone family linked to conformational diseases. In plants, sHsps prevent protein aggregation by acting as thermosensors and to enhance cell stress tolerance. SsHsp17.

View Article and Find Full Text PDF