A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Pleiotropic roles of N-glycans for enzyme activities and stabilities of MIPC synthases, Csh1 and Sur1/Csg1, in Saccharomyces cerevisiae. | LitMetric

Pleiotropic roles of N-glycans for enzyme activities and stabilities of MIPC synthases, Csh1 and Sur1/Csg1, in Saccharomyces cerevisiae.

Glycobiology

Division of Medical Biochemistry, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, 1-15-1, Fukumuro, Miyagino-ku, Sendai, Miyagi 983-8536, Japan.

Published: August 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Mannosyl phosphorylceramide (MIPC) is a membrane lipid classified as a complex sphingolipid in Saccharomyces cerevisiae. MIPC is synthesized by 2 redundant enzymes, Sur1/Csg1 and Csh1, in the Golgi lumen. MIPC consists of 5 subtypes (A, B', B, C, and D-type) according to the position and number of hydroxyl groups on the ceramide moiety. Sur1 exerts higher impact on synthesis of MIPC-B and MIPC-C than Csh1. In this study, we elucidated the roles played by N-glycans attached to Sur1 and Csh1, and dissected the mechanisms underlying substrate recognition by these 2 enzymes. Sur1 carries an N-glycan on Asn-224, whereas Csh1 has N-glycans on Asn-51 and Asn-247. Although intracellular proteins usually harbor core-type N-glycans, the N-glycan on Asn-51 of Csh1 exhibited a unique mannan-like structure containing a long backbone of mannose. Sur1 N224Q and Csh1 N51Q mutants exhibited a decrease in the activity to synthesize specific MIPC subtypes for each enzyme, suggesting that these N-glycans play a role in substrate recognition through their catalytic domains. Moreover, ectopic insertion of an N-glycosylation consensus sequence (NST) at codon 51 of Sur1 (Sur1-NST51) resulted in an artificial modification with mannan, which markedly decreased protein stability. Our results suggest that the diminished stability of the Sur1-NST51 mutant protein could be attributable to potential structural alterations by the mannan. Collectively, the present study reveals essential luminal domains of Sur1 and Csh1 that dictate substrate specificity and/or the protein stabilities via mannan modification.

Download full-text PDF

Source
http://dx.doi.org/10.1093/glycob/cwac035DOI Listing

Publication Analysis

Top Keywords

csh1
8
saccharomyces cerevisiae
8
sur1 csh1
8
substrate recognition
8
sur1
6
n-glycans
5
mipc
5
pleiotropic roles
4
roles n-glycans
4
n-glycans enzyme
4

Similar Publications