Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Dynamic principal component analysis (DPCA), also known as frequency domain principal component analysis, has been developed by Brillinger [, Vol. 36, SIAM, 1981] to decompose multivariate time-series data into a few principal component series. A primary advantage of DPCA is its capability of extracting essential components from the data by reflecting the serial dependence of them. It is also used to estimate the common component in a dynamic factor model, which is frequently used in econometrics. However, its beneficial property cannot be utilized when missing values are present, which should not be simply ignored when estimating the spectral density matrix in the DPCA procedure. Based on a novel combination of conventional DPCA and self-consistency concept, we propose a DPCA method when missing values are present. We demonstrate the advantage of the proposed method over some existing imputation methods through the Monte Carlo experiments and real data analysis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9042056 | PMC |
http://dx.doi.org/10.1080/02664763.2019.1699910 | DOI Listing |