A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Integrated approaches to testing and assessment for grouping nanomaterials following dermal exposure. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Exposure to different nanoforms (NFs) the dermal route is expected in occupational and consumer settings and thus it is important to assess their dermal toxicity and the contribution of dermal exposure to systemic bioavailability. We have formulated four grouping hypotheses for dermal toxicity endpoints which allow NFs to be grouped to streamline and facilitate risk assessment. The grouping hypotheses are developed based on insight into how physicochemical properties of NFs (i.e. composition, dissolution kinetics, size, and flexibility) influence their fate and hazard following dermal exposure. Each hypothesis is accompanied by a tailored Integrated Approach to Testing and Assessment (IATA) that is structured as a decision tree and tiered testing strategies (TTS) for each relevant question (at decision nodes) that indicate what information is needed to guide the user to accept or reject the grouping hypothesis. To develop these hypotheses and IATAs, we gathered and analyzed existing information on skin irritation, skin sensitization, and dermal penetration of NFs from the published literature and performed experimental work to generate data on NF dissolution in sweat simulant fluids. We investigated the dissolution of zinc oxide and silicon dioxide NFs in different artificial sweat fluids, demonstrating the importance of using physiologically relevant conditions for dermal exposure. All existing and generated data informed the formulation of the grouping hypotheses, the IATAs, and the design of the TTS. It is expected that the presented IATAs will accelerate the NF risk assessment for dermal toxicity via the application of read-across.

Download full-text PDF

Source
http://dx.doi.org/10.1080/17435390.2022.2085207DOI Listing

Publication Analysis

Top Keywords

dermal exposure
16
dermal toxicity
12
grouping hypotheses
12
dermal
9
testing assessment
8
assessment grouping
8
risk assessment
8
hypotheses iatas
8
grouping
5
exposure
5

Similar Publications