Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Tuberculosis (TB) is a leading source of infectious disease mortality globally. Antibiotic-resistant strains comprise an estimated 10 % of new TB cases and present an urgent need for novel therapeutics. β-lactam antibiotics have traditionally been ineffective against M. tuberculosis (Mtb), the causative agent of TB, due to the organism's inherent expression of β-lactamases that destroy the electrophilic β-lactam warhead. We have developed novel β-lactam conjugates, which exploit this inherent β-lactamase activity to achieve selective release of pyrazinoic acid (POA), the active form of a first-line TB drug. These conjugates are selectively active against M. tuberculosis and related mycobacteria, and activity is retained or even potentiated in multiple resistant strains and models. Preliminary mechanistic investigations suggest that both the POA "warhead" as well as the β-lactam "promoiety" contribute to the observed activity, demonstrating a codrug strategy with important implications for future TB therapy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9474573 | PMC |
http://dx.doi.org/10.1002/chem.202200995 | DOI Listing |