A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Development and validation of a Bayesian belief network predicting the probability of blood transfusion after pediatric injury. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Early recognition and intervention of hemorrhage are associated with decreased morbidity in children. Triage models have been developed to aid in the recognition of hemorrhagic shock after injury but require complete data and have limited accuracy. To address these limitations, we developed a Bayesian belief network, a machine learning model that represents the joint probability distribution for a set of observed or unobserved independent variables, to predict blood transfusion after injury in children and adolescents.

Methods: We abstracted patient, injury, and resuscitation characteristics of injured children and adolescents (age 1 to 18 years) from the 2017 to 2019 Trauma Quality Improvement Project database. We trained a Bayesian belief network to predict blood transfusion within 4 hours after arrival to the hospital following injury using data from 2017 and recalibrated the model using data from 2018. We validated our model on a subset of patients from the 2019 Trauma Quality Improvement Project. We evaluated model performance using the area under the receiver operating characteristic curve and calibration curves and compared performance with pediatric age-adjusted shock index (SIPA) and reverse shock index with Glasgow Coma Scale (rSIG) using sensitivity, specificity, accuracy, and Matthew's correlation coefficient (MCC).

Results: The final model included 14 predictor variables and had excellent discrimination and calibration. The model achieved an area under the receiver operating characteristic curve of 0.92 using emergency department data. When used as a binary predictor at an optimal threshold probability, the model had similar sensitivity, specificity, accuracy, and MCC compared with SIPA when only age, systolic blood pressure, and heart rate were observed. With the addition of the Glasgow Coma Scale score, the model has a higher accuracy and MCC than SIPA and rSIG.

Conclusion: A Bayesian belief network predicted blood transfusion after injury in children and adolescents better than SIPA and rSIG. This probabilistic model may allow clinicians to stratify hemorrhagic control interventions based upon risk.

Level Of Evidence: Prognostic and Epidemiologic; Level III.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9748028PMC
http://dx.doi.org/10.1097/TA.0000000000003709DOI Listing

Publication Analysis

Top Keywords

bayesian belief
16
belief network
16
blood transfusion
16
model
9
predict blood
8
transfusion injury
8
injury children
8
children adolescents
8
2019 trauma
8
trauma quality
8

Similar Publications