Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
The carbon backbone of biotin is constructed from the C di-acid pimelate, which is converted to an acyl-CoA thioester by an ATP-dependent, pimeloyl-CoA synthetase (PCAS, encoded by BioW). The acyl-thioester is condensed with ʟ-alanine in a decarboxylative, Claisen-like reaction to form an aminoketone (8-amino-7-oxononanoic acid, AON). This step is catalysed by the pyridoxal 5'-phosphate (PLP)-dependent enzyme (AON synthase, AONS, encoded by BioF). Distinct versions of Bacillus subtilis BioW (BsBioW) and E. coli BioF (EcBioF) display strict substrate specificity. In contrast, a BioW-BioF fusion from Corynebacterium amycolatum (CaBioWF) accepts a wider range of mono- and di-fatty acids. Analysis of the active site of the BsBioW : pimeloyl-adenylate complex suggested a key role for a Phe (F192) residue in the CaBioW domain; a F192Y mutant restored the substrate specificity to pimelate. This surprising substrate flexibility also extends to the CaBioF domain, which accepts ʟ-alanine, ʟ-serine and glycine. Structural models of the CaBioWF fusion provide insight into how both domains interact with each other and suggest the presence of an intra-domain tunnel. The CaBioWF fusion catalyses conversion of various fatty acids and amino acids to a range of AON derivatives. Such unexpected, natural broad substrate scope suggests that the CaBioWF fusion is a versatile biocatalyst that can be used to prepare a number of aminoketone analogues.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9544090 | PMC |
http://dx.doi.org/10.1002/cbic.202200171 | DOI Listing |