Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
A hierarchically ordered porous carbon electrocatalyst with exclusively surface-anchored cobalt species, dubbed Co@HOPC, is synthesized from polyaniline and cobalt-functionalized silica microparticles templates, and its high electrocatalytic activity for the oxygen evolution reaction (OER) is demonstrated. The material requires a small potential (320 mV) to drive the reaction with a current density of 10 mA cm and a small Tafel slope of 31.2 mV dec . Moreover, Co@HOPC shows better catalytic activity for OER than in situ cobalt-doped and surface cobalt-loaded hierarchically ordered porous carbon materials synthesized by traditional methods. This is due to the abundant surface cobalt species present in Co@HOPC and the material's good electrical conductivity. This work provides a new strategy to utilize functionalized silica microparticles as templates to synthesize hierarchically ordered porous carbon materials with metal-rich surfaces and efficient electrocatalytic activities.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smtd.202200519 | DOI Listing |