98%
921
2 minutes
20
Type-2 diabetes is a complex disorder that is now considered to have an immune component, with functional impairments in many immune cell types. Type-2 diabetes is often accompanied by comorbid obesity, which is associated with low grade inflammation. However,the immune status in Type-2 diabetes independent of obesity remains unclear. Goto-Kakizaki rats are a non-obese Type-2 diabetes model. The limited evidence available suggests that Goto-Kakizaki rats have a pro-inflammatory immune profile in pancreatic islets. Here we present a detailed overview of the adult Goto-Kakizaki rat immune system. Three converging lines of evidence: fewer pro-inflammatory cells, lower levels of circulating pro-inflammatory cytokines, and a clear downregulation of pro-inflammatory signalling in liver, muscle and adipose tissues indicate a limited pro-inflammatory baseline immune profile outside the pancreas. As Type-2 diabetes is frequently associated with obesity and adipocyte-released inflammatory mediators, the pro-inflammatory milieu seems not due to Type-2 diabetes ; although this overall reduction of immune markers suggests marked immune dysfunction in Goto-Kakizaki rats.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9168276 | PMC |
http://dx.doi.org/10.3389/fimmu.2022.896179 | DOI Listing |
Hormones (Athens)
September 2025
Division of Endocrinology, Baltimore VA Medical Center, Baltimore, MD, USA.
Sodium-glucose co-transporter 2 inhibitors (SGLT2i) are a fairly new class of agents for diabetes that have demonstrated significant benefits in glycemic control and cardiovascular outcomes with outpatient use. The aim of this review is to provide an overview of the effect of SGLT2i use on glycemic control and clinical outcomes in the hospital setting.An electronic search of PubMed was conducted to analyze publications that assessed the inpatient use of SGLT2i and included patients with diabetes.
View Article and Find Full Text PDFEndocrine
September 2025
Otorhinolaryngology, Head and Neck Surgery, Candiolo Cancer Institute, FPO-IRCCS Turin, Turin, Italy.
Background: While osteoporosis in primary hyperparathyroidism (PHPT) is widely studied, PHPT patients with osteopenia remain less characterized. This study aimed to evaluate the prevalence, biochemical features, and estimated fracture risk of osteopenic PHPT patients in a real-life cohort.
Methods: We retrospectively analyzed a consecutive series of PHPT patients with available densitometric data at three sites.
Acta Diabetol
September 2025
Department of Endocrinology & Metabolism, Medical College & Hospital, Kolkata, 88, College St. College Square, Kolkata, West Bengal, 700073, India.
Background And Aims: Gestational diabetes mellitus (GDM) is defined as glucose intolerance first identified during pregnancy that does not meet the criteria for overt diabetes. Its pathophysiology shares key features with type 2 diabetes mellitus (T2D), including insulin resistance and inflammation. Emerging evidence suggests that long non-coding RNAs (lncRNAs) are implicated in T2D.
View Article and Find Full Text PDFBiosci Biotechnol Biochem
September 2025
Department of Nutrition, Graduate School of Human Life and Ecology, Osaka Metropolitan University, Osaka 558-8585, Japan.
Glucagon dysregulation is a hallmark of type 2 diabetes mellitus (T2DM), yet its early hepatic effects remain unclear. Here, we demonstrate that glucagon-induced gluconeogenesis is markedly enhanced in primary hepatocytes from prediabetic Otsuka Long-Evans Tokushima Fatty (OLETF) rats, a well-established model of human T2DM. Compared to control LETO rats, OLETF hepatocytes showed significantly higher glucagon-stimulated expression of gluconeogenic genes (Pepck, G6pase, Fbp1) at both mRNA and protein levels, along with elevated glucose production.
View Article and Find Full Text PDFJ Agric Food Chem
September 2025
Center of Drug Safety Evaluation, Heilongjiang University of Chinese Medicine, Harbin 150040, China.
Creating effective treatments for type 2 diabetes mellitus (T2DM) remains a critical global health challenge. This study investigates the antidiabetic mechanisms of subsp. B-53 ( B-53) in T2DM mice.
View Article and Find Full Text PDF